Spaces:
Sleeping
Sleeping
# app.py | |
import gradio as gr | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
from deep_translator import GoogleTranslator | |
import torch | |
torch.set_num_threads(1) | |
torch.set_num_interop_threads(1) | |
model_name = "mrm8488/t5-base-finetuned-wikiSQL" | |
tokenizer = T5Tokenizer.from_pretrained(model_name) | |
model = T5ForConditionalGeneration.from_pretrained(model_name) | |
# Tu esquema personalizado | |
SCHEMA = """ | |
Schema: | |
Table bodegas with columns: Id, Nombre, Encargado, Telefono, Email, Direccion, Horario, Regional, Latitud, Longitud. | |
Table maestra with columns: CodigoSap, Descripcion, Grupo, Agrupador, Marca, Parte, Operacion, Componente. | |
""" | |
def generar_sql(pregunta_espanol): | |
try: | |
pregunta_ingles = GoogleTranslator(source="es", target="en").translate(pregunta_espanol) | |
prompt = f"{SCHEMA}\ntranslate English to SQL: {pregunta_ingles}" | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids | |
output = model.generate(input_ids, max_length=128) | |
sql = tokenizer.decode(output[0], skip_special_tokens=True) | |
return sql | |
except Exception as e: | |
return f"Error: {str(e)}" | |
iface = gr.Interface( | |
fn=generar_sql, | |
inputs=gr.Textbox(lines=3, label="Pregunta en español"), | |
outputs=gr.Textbox(label="Consulta SQL generada"), | |
title="Texto a SQL con esquema personalizado", | |
description="Escribe una pregunta en español y genera SQL sobre las tablas `bodegas` y `maestra`." | |
) | |
iface.launch() | |