import gradio as gr import torch from transformers import pipeline as hf_pipeline, AutoModelForSequenceClassification, AutoTokenizer # ——— 1) Emotion Pipeline ———————————————————————————————————————————————— emotion_pipeline = hf_pipeline( "text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=None, truncation=True ) def get_emotion_profile(text): """ Returns a dict of { emotion_label: score } for the input text. """ results = emotion_pipeline(text) # some pipelines return [[…]] if isinstance(results, list) and isinstance(results[0], list): results = results[0] return {r["label"].lower(): round(r["score"], 3) for r in results} # ——— 2) Abuse-patterns Model —————————————————————————————————————————————— model_name = "SamanthaStorm/tether-multilabel-v3" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) LABELS = [ "blame shifting", "contradictory statements", "control", "dismissiveness", "gaslighting", "guilt tripping", "insults", "obscure language", "projection", "recovery phase", "threat" ] THRESHOLDS = { "blame shifting": 0.28, "contradictory statements": 0.27, "control": 0.08, "dismissiveness": 0.32, "gaslighting": 0.27, "guilt tripping": 0.31, "insults": 0.10, "obscure language": 0.55, "projection": 0.09, "recovery phase": 0.33, "threat": 0.15 } # ——— 3) Single-message analysis —————————————————————————————————————————————— def analyze_message(text): """ Runs emotion profiling, and the abuse-pattern classifier. Returns a dict with: - matched_phrases: list of raw regex hits - emotion_profile: { emotion: score } - active_patterns: [ labels above their threshold ] """ emotion_profile = get_emotion_profile(text) # get raw model scores toks = tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): logits = model(**toks).logits.squeeze(0) scores = torch.sigmoid(logits).cpu().numpy() # pick up all labels whose score >= threshold active = [lab for lab, sc in zip(LABELS, scores) if sc >= THRESHOLDS[lab]] return { "matched_phrases": matched_phrases, "emotion_profile": emotion_profile, "active_patterns": active } # ——— 4) Composite wrapper (for multiple inputs) ——————————————————————————————————— def analyze_composite(*texts): """ Accept multiple text inputs, run analyze_message on each, and return a single formatted string. """ outputs = [] for idx, txt in enumerate(texts, start=1): if not txt: continue r = analyze_message(txt) block = ( f"── Message {idx} ──\n" f"Matched Phrases: {r['matched_phrases']}\n" f"Emotion Profile: {r['emotion_profile']}\n" f"Active Patterns: {r['active_patterns']}\n" ) outputs.append(block) return "\n".join(outputs) if outputs else "Please enter at least one message." # ——— 5) Gradio interface ———————————————————————————————————————————————— # adjust how many message inputs you want here: message_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)] iface = gr.Interface( fn=analyze_composite, inputs=message_inputs, outputs=gr.Textbox(label="Analysis"), title="Tether Analyzer (no abuse-score / no DARVO)", description="emotions, and active abuse-patterns only." ) if __name__ == "__main__": iface.launch()