Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
# Load SST sentiment model (adjust model name if different) | |
sst_classifier = pipeline( | |
"text-classification", | |
model="SamanthaStorm/tether-sst", # replace with your actual SST model name | |
top_k=None, | |
truncation=True | |
) | |
def classify_sentiment(text): | |
result = sst_classifier(text)[0] | |
label = result["label"] | |
score = round(result["score"] * 100, 2) | |
if label == "LABEL_0": | |
return f"Supportive ({score}%)" | |
elif label == "LABEL_1": | |
return f"Undermining ({score}%)" | |
else: | |
return f"Unknown label ({label})" | |
iface = gr.Interface( | |
fn=classify_sentiment, | |
inputs=gr.Textbox(lines=4, placeholder="Paste message here..."), | |
outputs="text", | |
title="Tether SST Sentiment Analyzer", | |
description="Classifies language as Supportive or Undermining based on tone and intent. Part of the Tether project." | |
) | |
iface.launch() |