TetherSST / app.py
SamanthaStorm's picture
Update app.py
31f28ee verified
raw
history blame
841 Bytes
def analyze_message(text):
preprocessed = preprocess_sentiment_text(text)
sst_output = sst_classifier(preprocessed)
sentiment = sst_output[0]
sentiment_label = "supportive" if sentiment["label"] == "POSITIVE" else "undermining"
sentiment_score = round(sentiment["score"] * 100, 2)
emotions = get_emotion_profile(text)
emotion_summary = "\n".join([f"{k.title()}: {v:.2f}" for k, v in emotions.items()])
# Temporarily pass empty abuse pattern list until Tether model is added
tone_tag = get_emotional_tone_tag(emotions, sentiment_label, patterns=[])
tone_output = tone_tag if tone_tag else "None detected"
return (
f"🧠 Sentiment: {sentiment_label.title()} ({sentiment_score}%)\n\n"
f"🎭 Emotional Profile:\n{emotion_summary}\n\n"
f"🔍 Tone Tag: {tone_output}"
)