import gradio as gr import torch from transformers import RobertaForSequenceClassification, RobertaTokenizer import numpy as np import tempfile # Load model and tokenizer model_name = "SamanthaStorm/abuse-pattern-detector-v2" model = RobertaForSequenceClassification.from_pretrained(model_name) tokenizer = RobertaTokenizer.from_pretrained(model_name) # Define the final label order your model used LABELS = [ "gaslighting", "mockery", "dismissiveness", "control", "guilt_tripping", "apology_baiting", "blame_shifting", "projection", "contradictory_statements", "manipulation", "deflection", "insults", "obscure_formal", "recovery_phase", "suicidal_threat", "physical_threat", "extreme_control" ] TOTAL_LABELS = 17 # Our model outputs 17 labels: # - First 14 are abuse pattern categories # - Last 3 are Danger Assessment cues TOTAL_LABELS = 17 # Individual thresholds for each of the 17 labels THRESHOLDS = { "gaslighting": 0.15, "mockery": 0.15, "dismissiveness": 0.15, "control": 0.15, "guilt_tripping": 0.15, "apology_baiting": 0.15, "blame_shifting": 0.15, "projection": 0.15, "contradictory_statements": 0.15, "manipulation": 0.15, "deflection": 0.15, "insults": 0.15, "obscure_formal": 0.15, "recovery_phase": 0.15, "suicidal_threat": 0.10, "physical_threat": 0.10, "extreme_control": 0.10 } def analyze_messages(input_text): input_text = input_text.strip() if not input_text: return "Please enter a message for analysis." # Tokenize inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = model(**inputs) # Squeeze out batch dimension: shape should be [17] logits = outputs.logits.squeeze(0) # Convert logits to probabilities scores = torch.sigmoid(logits).numpy() print("Scores:", scores) print("Danger Scores:", scores[14:]) # suicidal, physical, extreme # Debug printing (remove once you're confident everything works) print("Scores:", scores) pattern_count = 0 danger_flag_count = 0 for i, (label, score) in enumerate(zip(LABELS, scores)): if score > THRESHOLDS[label]: if i < 14: pattern_count += 1 else: danger_flag_count += 1 # (Optional) Print label-by-label for debugging for i, s in enumerate(scores): print(LABELS[i], "=", round(s, 3)) danger_assessment = ( "High" if danger_flag_count >= 2 else "Moderate" if danger_flag_count == 1 else "Low" ) # Customize resource links based on Danger Assessment Score (with additional niche support) if danger_assessment == "High": resources = ( "**Immediate Help:** If you are in immediate danger, please call 911.\n\n" "**Crisis Support:** National DV Hotline – Safety Planning: [thehotline.org/plan-for-safety](https://www.thehotline.org/plan-for-safety/)\n" "**Legal Assistance:** WomensLaw – Legal Help for Survivors: [womenslaw.org](https://www.womenslaw.org/)\n" "**Specialized Support:** For LGBTQ+, immigrants, and neurodivergent survivors, please consult local specialized services or visit RAINN: [rainn.org](https://www.rainn.org/)" ) elif danger_assessment == "Moderate": resources = ( "**Safety Planning:** The Hotline – What Is Emotional Abuse?: [thehotline.org/resources](https://www.thehotline.org/resources/what-is-emotional-abuse/)\n" "**Relationship Health:** One Love Foundation – Digital Relationship Health: [joinonelove.org](https://www.joinonelove.org/)\n" "**Support Chat:** National Domestic Violence Hotline Chat: [thehotline.org](https://www.thehotline.org/)\n" "**Specialized Groups:** Look for support groups tailored for LGBTQ+, immigrant, and neurodivergent communities." ) else: # Low risk resources = ( "**Educational Resources:** Love Is Respect – Healthy Relationships: [loveisrespect.org](https://www.loveisrespect.org/)\n" "**Therapy Finder:** Psychology Today – Find a Therapist: [psychologytoday.com](https://www.psychologytoday.com/us/therapists)\n" "**Relationship Tools:** Relate – Relationship Health Tools: [relate.org.uk](https://www.relate.org.uk/)\n" "**Community Support:** Consider community-based and online support groups, especially those focused on LGBTQ+, immigrant, and neurodivergent survivors." ) # Prepare the output result with just pattern count and dynamic resources result_md = ( f"**Abuse Pattern Count:** {pattern_count}\n\n" f"**Support Resources:**\n{resources}" ) # Save the result to a temporary text file for download with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w") as f: f.write(result_md) report_path = f.name return result_md, report_path # Build the Gradio interface with gr.Blocks() as demo: gr.Markdown("# Abuse Pattern Detector - Risk Analysis") gr.Markdown("Enter one or more messages (separated by newlines) for analysis.") text_input = gr.Textbox(label="Input Messages", lines=10, placeholder="Type your message(s) here...") result_output = gr.Markdown(label="Analysis Result") download_output = gr.File(label="Download Report (.txt)") text_input.submit(analyze_messages, inputs=text_input, outputs=[result_output, download_output]) analyze_btn = gr.Button("Analyze") analyze_btn.click(analyze_messages, inputs=text_input, outputs=[result_output, download_output]) if __name__ == "__main__": demo.launch()