SamanthaStorm commited on
Commit
e01a07a
·
verified ·
1 Parent(s): 16d3234

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -4
app.py CHANGED
@@ -67,16 +67,22 @@ model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device
67
  tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
68
 
69
  # sentiment model - add no_cache=True and force_download=True
 
 
 
 
 
 
70
  sentiment_model = AutoModelForSequenceClassification.from_pretrained(
71
  "SamanthaStorm/tether-sentiment",
72
- no_cache=True,
73
- force_download=True
74
  ).to(device)
75
  sentiment_tokenizer = AutoTokenizer.from_pretrained(
76
  "SamanthaStorm/tether-sentiment",
77
  use_fast=False,
78
- no_cache=True,
79
- force_download=True
80
  )
81
 
82
  # After loading the sentiment model
@@ -85,6 +91,7 @@ logger.debug(f"Model name: {sentiment_model.config.name_or_path}")
85
  logger.debug(f"Last modified: {sentiment_model.config._name_or_path}")
86
 
87
 
 
88
  emotion_pipeline = hf_pipeline(
89
  "text-classification",
90
  model="j-hartmann/emotion-english-distilroberta-base",
 
67
  tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
68
 
69
  # sentiment model - add no_cache=True and force_download=True
70
+ # Model initialization
71
+ model_name = "SamanthaStorm/tether-multilabel-v4"
72
+ model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
73
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
74
+
75
+ # sentiment model
76
  sentiment_model = AutoModelForSequenceClassification.from_pretrained(
77
  "SamanthaStorm/tether-sentiment",
78
+ force_download=True,
79
+ local_files_only=False
80
  ).to(device)
81
  sentiment_tokenizer = AutoTokenizer.from_pretrained(
82
  "SamanthaStorm/tether-sentiment",
83
  use_fast=False,
84
+ force_download=True,
85
+ local_files_only=False
86
  )
87
 
88
  # After loading the sentiment model
 
91
  logger.debug(f"Last modified: {sentiment_model.config._name_or_path}")
92
 
93
 
94
+
95
  emotion_pipeline = hf_pipeline(
96
  "text-classification",
97
  model="j-hartmann/emotion-english-distilroberta-base",