Tether / app.py
SamanthaStorm's picture
Update app.py
6c8beb4 verified
raw
history blame
34.2 kB
import gradio as gr
import spaces
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline as hf_pipeline
import re
import matplotlib.pyplot as plt
import io
from PIL import Image
from datetime import datetime
from torch.nn.functional import sigmoid
from collections import Counter
import logging
import traceback
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f"Using device: {device}")
# Model initialization
model_name = "SamanthaStorm/tether-multilabel-v4"
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
# Sentiment model
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment").to(device)
sentiment_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-sentiment", use_fast=False)
emotion_pipeline = hf_pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
return_all_scores=True, # Get all emotion scores
top_k=None, # Don't limit to top k predictions
truncation=True,
device=0 if torch.cuda.is_available() else -1
)
# DARVO model
darvo_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1").to(device)
darvo_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1", use_fast=False)
darvo_model.eval()
# Constants and Labels
LABELS = [
"recovery", "control", "gaslighting", "guilt tripping", "dismissiveness",
"blame shifting", "nonabusive", "projection", "insults",
"contradictory statements", "obscure language"
]
SENTIMENT_LABELS = ["undermining", "supportive"]
THRESHOLDS = {
"recovery": 0.4,
"control": 0.45,
"gaslighting": 0.25,
"guilt tripping": 0.20,
"dismissiveness": 0.25,
"blame shifting": 0.25,
"projection": 0.25,
"insults": 0.05,
"contradictory statements": 0.25,
"obscure language": 0.15,
"nonabusive": 1.0
}
PATTERN_WEIGHTS = {
"recovery": 0.7,
"control": 1.4,
"gaslighting": 1.50,
"guilt tripping": 1.2,
"dismissiveness": 0.9,
"blame shifting": 0.8,
"projection": 0.5,
"insults": 1.4,
"contradictory statements": 1.0,
"obscure language": 0.9,
"nonabusive": 0.0
}
ESCALATION_QUESTIONS = [
("Partner has access to firearms or weapons", 4),
("Partner threatened to kill you", 3),
("Partner threatened you with a weapon", 3),
("Partner has ever choked you, even if you considered it consensual at the time", 4),
("Partner injured or threatened your pet(s)", 3),
("Partner has broken your things, punched or kicked walls, or thrown things ", 2),
("Partner forced or coerced you into unwanted sexual acts", 3),
("Partner threatened to take away your children", 2),
("Violence has increased in frequency or severity", 3),
("Partner monitors your calls/GPS/social media", 2)
]
RISK_STAGE_LABELS = {
1: "🌀 Risk Stage: Tension-Building\nThis message reflects rising emotional pressure or subtle control attempts.",
2: "🔥 Risk Stage: Escalation\nThis message includes direct or aggressive patterns, suggesting active harm.",
3: "🌧️ Risk Stage: Reconciliation\nThis message reflects a reset attempt—apologies or emotional repair without accountability.",
4: "🌸 Risk Stage: Calm / Honeymoon\nThis message appears supportive but may follow prior harm, minimizing it."
}
THREAT_MOTIFS = [
"i'll kill you", "i'm going to hurt you", "you're dead", "you won't survive this",
"i'll break your face", "i'll bash your head in", "i'll snap your neck",
"i'll come over there and make you shut up", "i'll knock your teeth out",
"you're going to bleed", "you want me to hit you?", "i won't hold back next time",
"i swear to god i'll beat you", "next time, i won't miss", "i'll make you scream",
"i know where you live", "i'm outside", "i'll be waiting", "i saw you with him",
"you can't hide from me", "i'm coming to get you", "i'll find you", "i know your schedule",
"i watched you leave", "i followed you home", "you'll regret this", "you'll be sorry",
"you're going to wish you hadn't", "you brought this on yourself", "don't push me",
"you have no idea what i'm capable of", "you better watch yourself",
"i don't care what happens to you anymore", "i'll make you suffer", "you'll pay for this",
"i'll never let you go", "you're nothing without me", "if you leave me, i'll kill myself",
"i'll ruin you", "i'll tell everyone what you did", "i'll make sure everyone knows",
"i'm going to destroy your name", "you'll lose everyone", "i'll expose you",
"your friends will hate you", "i'll post everything", "you'll be cancelled",
"you'll lose everything", "i'll take the house", "i'll drain your account",
"you'll never see a dime", "you'll be broke when i'm done", "i'll make sure you lose your job",
"i'll take your kids", "i'll make sure you have nothing", "you can't afford to leave me",
"don't make me do this", "you know what happens when i'm mad", "you're forcing my hand",
"if you just behaved, this wouldn't happen", "this is your fault",
"you're making me hurt you", "i warned you", "you should have listened"
]
def get_emotion_profile(text):
"""Get emotion profile from text with all scores"""
try:
emotions = emotion_pipeline(text)
if isinstance(emotions, list) and isinstance(emotions[0], list):
# Extract all scores from the first prediction
emotion_scores = emotions[0]
# Convert to dictionary with lowercase emotion names
return {e['label'].lower(): round(e['score'], 3) for e in emotion_scores}
return {}
except Exception as e:
logger.error(f"Error in get_emotion_profile: {e}")
return {
"sadness": 0.0,
"joy": 0.0,
"neutral": 0.0,
"disgust": 0.0,
"anger": 0.0,
"fear": 0.0
}
def get_emotional_tone_tag(text, sentiment, patterns, abuse_score):
"""Get emotional tone tag based on emotions and patterns"""
emotions = get_emotion_profile(text)
sadness = emotions.get("sadness", 0)
joy = emotions.get("joy", 0)
neutral = emotions.get("neutral", 0)
disgust = emotions.get("disgust", 0)
anger = emotions.get("anger", 0)
fear = emotions.get("fear", 0)
# 1. Performative Regret
if (
sadness > 0.3 and
any(p in patterns for p in ["blame shifting", "guilt tripping", "recovery"]) and
(sentiment == "undermining" or abuse_score > 40)
):
return "performative regret"
# 2. Coercive Warmth
if (
(joy > 0.2 or sadness > 0.3) and
any(p in patterns for p in ["control", "gaslighting"]) and
sentiment == "undermining"
):
return "coercive warmth"
# 3. Cold Invalidation
if (
(neutral + disgust) > 0.4 and
any(p in patterns for p in ["dismissiveness", "projection", "obscure language"]) and
sentiment == "undermining"
):
return "cold invalidation"
# 4. Genuine Vulnerability
if (
(sadness + fear) > 0.4 and
sentiment == "supportive" and
all(p in ["recovery"] for p in patterns)
):
return "genuine vulnerability"
# 5. Emotional Threat
if (
(anger + disgust) > 0.4 and
any(p in patterns for p in ["control", "insults", "dismissiveness"]) and
sentiment == "undermining"
):
return "emotional threat"
# 6. Weaponized Sadness
if (
sadness > 0.5 and
any(p in patterns for p in ["guilt tripping", "projection"]) and
sentiment == "undermining"
):
return "weaponized sadness"
# 7. Toxic Resignation
if (
neutral > 0.4 and
any(p in patterns for p in ["dismissiveness", "obscure language"]) and
sentiment == "undermining"
):
return "toxic resignation"
# 8. Aggressive Dismissal
if (
anger > 0.4 and
any(p in patterns for p in ["insults", "control"]) and
sentiment == "undermining"
):
return "aggressive dismissal"
# 9. Deflective Hostility
if (
(0.15 < anger < 0.6 or 0.15 < disgust < 0.6) and
any(p in patterns for p in ["projection"]) and
sentiment == "undermining"
):
return "deflective hostility"
# 10. Contradictory Gaslight
if (
(joy + anger + sadness) > 0.4 and
any(p in patterns for p in ["gaslighting", "contradictory statements"]) and
sentiment == "undermining"
):
return "contradictory gaslight"
# 11. Forced Accountability Flip
if (
(anger + disgust) > 0.4 and
any(p in patterns for p in ["blame shifting", "projection"]) and
sentiment == "undermining"
):
return "forced accountability flip"
# Emotional Instability Fallback
if (
(anger + sadness + disgust) > 0.5 and
sentiment == "undermining"
):
return "emotional instability"
return "neutral"
@spaces.GPU
def predict_darvo_score(text):
"""Predict DARVO score for given text"""
try:
inputs = darvo_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
logits = darvo_model(**inputs).logits
return round(sigmoid(logits.cpu()).item(), 4)
except Exception as e:
logger.error(f"Error in DARVO prediction: {e}")
return 0.0
def detect_weapon_language(text):
"""Detect weapon-related language in text"""
weapon_keywords = ["knife", "gun", "bomb", "weapon", "kill", "stab"]
t = text.lower()
return any(w in t for w in weapon_keywords)
def get_risk_stage(patterns, sentiment):
"""Determine risk stage based on patterns and sentiment"""
try:
if "insults" in patterns:
return 2
elif "recovery" in patterns:
return 3
elif "control" in patterns or "guilt tripping" in patterns:
return 1
elif sentiment == "supportive" and any(p in patterns for p in ["projection", "dismissiveness"]):
return 4
return 1
except Exception as e:
logger.error(f"Error determining risk stage: {e}")
return 1
@spaces.GPU
def compute_abuse_score(matched_scores, sentiment):
"""Compute abuse score from matched patterns and sentiment"""
try:
if not matched_scores:
return 0.0
total_weight = sum(weight for _, _, weight in matched_scores)
if total_weight == 0:
return 0.0
pattern_scores = [(label, score) for label, score, _ in matched_scores]
sorted_scores = sorted(pattern_scores, key=lambda x: x[1], reverse=True)
weighted_sum = sum(score * weight for _, score, weight in matched_scores)
base_score = (weighted_sum / total_weight) * 100
# Pattern combination multipliers
if len(matched_scores) >= 3:
base_score *= 1.2
high_severity_patterns = {'gaslighting', 'control', 'blame shifting'}
if any(label in high_severity_patterns for label, _, _ in matched_scores):
base_score *= 1.15
if any(score > 0.6 for _, score, _ in matched_scores):
base_score *= 1.1
high_scores = len([score for _, score, _ in matched_scores if score > 0.5])
if high_scores >= 2:
base_score *= 1.15
# Apply sentiment modifiers
if sentiment == "supportive":
if any(label in high_severity_patterns for label, _, _ in matched_scores):
base_score *= 0.9
else:
base_score *= 0.85
elif sentiment == "undermining":
base_score *= 1.15
if any(score > 0.6 for _, score, _ in matched_scores):
base_score = max(base_score, 65.0)
return min(round(base_score, 1), 100.0)
except Exception as e:
logger.error(f"Error computing abuse score: {e}")
return 0.0
@spaces.GPU
def analyze_single_message(text, thresholds):
"""Analyze a single message for abuse patterns"""
logger.debug("\n=== DEBUG START ===")
logger.debug(f"Input text: {text}")
try:
if not text.strip():
logger.debug("Empty text, returning zeros")
return 0.0, [], [], {"label": "none"}, 1, 0.0, None
# Check for explicit abuse
explicit_abuse_words = ['fuck', 'bitch', 'shit', 'ass', 'dick']
explicit_abuse = any(word in text.lower() for word in explicit_abuse_words)
logger.debug(f"Explicit abuse detected: {explicit_abuse}")
# Abuse model inference
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
raw_scores = torch.sigmoid(outputs.logits.squeeze(0)).cpu().numpy()
# Log raw model outputs
logger.debug("\nRaw model scores:")
for label, score in zip(LABELS, raw_scores):
logger.debug(f"{label}: {score:.3f}")
# Get predictions and sort them
predictions = list(zip(LABELS, raw_scores))
sorted_predictions = sorted(predictions, key=lambda x: x[1], reverse=True)
logger.debug("\nTop 3 predictions:")
for label, score in sorted_predictions[:3]:
logger.debug(f"{label}: {score:.3f}")
# Apply thresholds
threshold_labels = []
if explicit_abuse:
threshold_labels.append("insults")
logger.debug("\nForced inclusion of 'insults' due to explicit abuse")
for label, score in sorted_predictions:
base_threshold = thresholds.get(label, 0.25)
if explicit_abuse:
base_threshold *= 0.5
if score > base_threshold:
if label not in threshold_labels:
threshold_labels.append(label)
logger.debug("\nLabels that passed thresholds:", threshold_labels)
# Calculate matched scores
matched_scores = []
for label in threshold_labels:
score = raw_scores[LABELS.index(label)]
weight = PATTERN_WEIGHTS.get(label, 1.0)
if explicit_abuse and label == "insults":
weight *= 1.5
matched_scores.append((label, score, weight))
# Get sentiment
sent_inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
sent_inputs = {k: v.to(device) for k, v in sent_inputs.items()}
with torch.no_grad():
sent_logits = sentiment_model(**sent_inputs).logits[0]
sent_probs = torch.softmax(sent_logits, dim=-1).cpu().numpy()
sentiment = SENTIMENT_LABELS[int(np.argmax(sent_probs))]
# Calculate abuse score
abuse_score = compute_abuse_score(matched_scores, sentiment)
if explicit_abuse:
abuse_score = max(abuse_score, 70.0)
# Get DARVO score
darvo_score = predict_darvo_score(text)
# Get tone using emotion-based approach
tone_tag = get_emotional_tone_tag(text, sentiment, threshold_labels, abuse_score)
# Set stage
stage = 2 if explicit_abuse or abuse_score > 70 else 1
logger.debug("=== DEBUG END ===\n")
return abuse_score, threshold_labels, matched_scores, {"label": sentiment}, stage, darvo_score, tone_tag
except Exception as e:
logger.error(f"Error in analyze_single_message: {e}")
return 0.0, [], [], {"label": "error"}, 1, 0.0, None
def generate_abuse_score_chart(dates, scores, patterns):
"""Generate a timeline chart of abuse scores"""
try:
plt.figure(figsize=(10, 6))
plt.clf()
# Create new figure
fig, ax = plt.subplots(figsize=(10, 6))
# Plot points and lines
x = range(len(scores))
plt.plot(x, scores, 'bo-', linewidth=2, markersize=8)
# Add labels for each point
for i, (score, pattern) in enumerate(zip(scores, patterns)):
plt.annotate(
f'{pattern}\n{score:.0f}%',
(i, score),
textcoords="offset points",
xytext=(0, 10),
ha='center',
bbox=dict(
boxstyle='round,pad=0.5',
fc='white',
ec='gray',
alpha=0.8
)
)
# Customize the plot
plt.ylim(-5, 105)
plt.grid(True, linestyle='--', alpha=0.7)
plt.title('Abuse Pattern Timeline', pad=20, fontsize=12)
plt.ylabel('Abuse Score %')
# X-axis labels
plt.xticks(x, dates, rotation=45)
# Risk level bands
plt.axhspan(0, 50, color='#90EE90', alpha=0.2) # light green
plt.axhspan(50, 70, color='#FFD700', alpha=0.2) # gold
plt.axhspan(70, 85, color='#FFA500', alpha=0.2) # orange
plt.axhspan(85, 100, color='#FF6B6B', alpha=0.2) # light red
# Add risk level labels
plt.text(-0.2, 25, 'Low Risk', rotation=90, va='center')
plt.text(-0.2, 60, 'Moderate Risk', rotation=90, va='center')
plt.text(-0.2, 77.5, 'High Risk', rotation=90, va='center')
plt.text(-0.2, 92.5, 'Critical Risk', rotation=90, va='center')
# Adjust layout
plt.tight_layout()
# Convert plot to image
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
plt.close('all') # Close all figures to prevent memory leaks
return Image.open(buf)
except Exception as e:
logger.error(f"Error generating abuse score chart: {e}")
return None
def analyze_composite(msg1, msg2, msg3, *answers_and_none):
"""Analyze multiple messages and checklist responses"""
logger.debug("\n====== STARTING NEW ANALYSIS ======")
try:
# Process checklist responses
logger.debug("\n--- Checklist Processing ---")
none_selected_checked = answers_and_none[-1]
responses_checked = any(answers_and_none[:-1])
none_selected = not responses_checked and none_selected_checked
logger.debug(f"None selected checked: {none_selected_checked}")
logger.debug(f"Responses checked: {responses_checked}")
logger.debug(f"None selected: {none_selected}")
if none_selected:
escalation_score = 0
escalation_note = "Checklist completed: no danger items reported."
escalation_completed = True
logger.debug("No items selected in checklist")
elif responses_checked:
escalation_score = sum(w for (_, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]) if a)
escalation_note = "Checklist completed."
escalation_completed = True
logger.debug(f"Checklist completed with score: {escalation_score}")
# Log checked items
logger.debug("Checked items:")
for (q, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]):
if a:
logger.debug(f"• {q} (weight: {w})")
else:
escalation_score = None
escalation_note = "Checklist not completed."
escalation_completed = False
logger.debug("Checklist not completed")
# Process messages
logger.debug("\n--- Message Processing ---")
messages = [msg1, msg2, msg3]
active = [(m, f"Message {i+1}") for i, m in enumerate(messages) if m.strip()]
logger.debug(f"Number of active messages: {len(active)}")
if not active:
logger.debug("No messages provided")
return "Please enter at least one message.", None
# Detect threats
logger.debug("\n--- Threat Detection ---")
def normalize(text):
import unicodedata
text = text.lower().strip()
text = unicodedata.normalize("NFKD", text)
text = text.replace("'", "'")
return re.sub(r"[^a-z0-9 ]", "", text)
def detect_threat_motifs(message, motif_list):
norm_msg = normalize(message)
return [motif for motif in motif_list if normalize(motif) in norm_msg]
# Analyze threats and patterns
immediate_threats = [detect_threat_motifs(m, THREAT_MOTIFS) for m, _ in active]
flat_threats = [t for sublist in immediate_threats for t in sublist]
threat_risk = "Yes" if flat_threats else "No"
if flat_threats:
logger.debug("Detected threats:")
for threat in flat_threats:
logger.debug(f"• {threat}")
else:
logger.debug("No explicit threats detected")
# Analyze each message
logger.debug("\n--- Individual Message Analysis ---")
results = []
for m, d in active:
logger.debug(f"\nAnalyzing {d}:")
logger.debug("-" * 40)
result = analyze_single_message(m, THRESHOLDS.copy())
results.append((result, d))
# Log results for each message
abuse_score, patterns, matched_scores, sentiment, stage, darvo_score, tone = result
logger.debug(f"Results for {d}:")
logger.debug(f"• Abuse Score: {abuse_score}")
logger.debug(f"• Patterns: {patterns}")
logger.debug(f"• Matched Scores: {matched_scores}")
logger.debug(f"• Sentiment: {sentiment['label']}")
logger.debug(f"• Stage: {stage}")
logger.debug(f"• DARVO Score: {darvo_score}")
logger.debug(f"• Tone: {tone}")
# Extract scores and metadata
abuse_scores = [r[0][0] for r in results]
stages = [r[0][4] for r in results]
darvo_scores = [r[0][5] for r in results]
tone_tags = [r[0][6] for r in results]
dates_used = [r[1] for r in results]
logger.debug("\n--- Pattern Analysis ---")
predicted_labels = [label for r in results for label in r[0][1]]
logger.debug(f"All detected patterns: {predicted_labels}")
# Pattern severity analysis
logger.debug("\n--- Pattern Severity Analysis ---")
high = {'control'}
moderate = {'gaslighting', 'dismissiveness', 'obscure language', 'insults',
'contradictory statements', 'guilt tripping'}
low = {'blame shifting', 'projection', 'recovery'}
counts = {'high': 0, 'moderate': 0, 'low': 0}
for label in predicted_labels:
if label in high:
counts['high'] += 1
logger.debug(f"High severity pattern found: {label}")
elif label in moderate:
counts['moderate'] += 1
logger.debug(f"Moderate severity pattern found: {label}")
elif label in low:
counts['low'] += 1
logger.debug(f"Low severity pattern found: {label}")
logger.debug(f"Pattern counts - High: {counts['high']}, Moderate: {counts['moderate']}, Low: {counts['low']}")
# Pattern escalation logic
logger.debug("\n--- Escalation Risk Assessment ---")
if counts['high'] >= 2 and counts['moderate'] >= 2:
pattern_escalation_risk = "Critical"
logger.debug("Critical risk: Multiple high and moderate patterns")
elif (counts['high'] >= 2 and counts['moderate'] >= 1) or \
(counts['moderate'] >= 3) or \
(counts['high'] >= 1 and counts['moderate'] >= 2):
pattern_escalation_risk = "High"
logger.debug("High risk: Significant pattern combination")
elif (counts['moderate'] == 2) or \
(counts['high'] == 1 and counts['moderate'] == 1) or \
(counts['moderate'] == 1 and counts['low'] >= 2) or \
(counts['high'] == 1 and sum(counts.values()) == 1):
pattern_escalation_risk = "Moderate"
logger.debug("Moderate risk: Concerning pattern combination")
else:
pattern_escalation_risk = "Low"
logger.debug("Low risk: Limited pattern severity")
# Calculate checklist escalation risk
logger.debug("\n--- Checklist Risk Assessment ---")
checklist_escalation_risk = "Unknown" if escalation_score is None else (
"Critical" if escalation_score >= 20 else
"Moderate" if escalation_score >= 10 else
"Low"
)
logger.debug(f"Checklist escalation risk: {checklist_escalation_risk}")
# Calculate escalation bump
logger.debug("\n--- Escalation Bump Calculation ---")
escalation_bump = 0
for result, msg_id in results:
abuse_score, _, _, sentiment, stage, darvo_score, tone_tag = result
logger.debug(f"\nChecking escalation factors for {msg_id}:")
if darvo_score > 0.65:
escalation_bump += 3
logger.debug("• +3 for high DARVO score")
if tone_tag in ["forced accountability flip", "emotional threat"]:
escalation_bump += 2
logger.debug("• +2 for concerning tone")
if abuse_score > 80:
escalation_bump += 2
logger.debug("• +2 for high abuse score")
if stage == 2:
escalation_bump += 3
logger.debug("• +3 for escalation stage")
logger.debug(f"Total escalation bump: +{escalation_bump}")
# Calculate combined risk
logger.debug("\n--- Combined Risk Calculation ---")
def rank(label):
return {"Low": 0, "Moderate": 1, "High": 2, "Critical": 3, "Unknown": 0}.get(label, 0)
combined_score = rank(pattern_escalation_risk) + rank(checklist_escalation_risk) + escalation_bump
logger.debug(f"Combined risk score: {combined_score}")
escalation_risk = (
"Critical" if combined_score >= 6 else
"High" if combined_score >= 4 else
"Moderate" if combined_score >= 2 else
"Low"
)
logger.debug(f"Final escalation risk: {escalation_risk}")
# Build escalation text
logger.debug("\n--- Building Output Text ---")
if escalation_score is None:
escalation_text = (
"🚫 **Escalation Potential: Unknown** (Checklist not completed)\n"
"⚠️ This section was not completed. Escalation potential is estimated using message data only.\n"
)
hybrid_score = 0
logger.debug("Generated unknown escalation text")
elif escalation_score == 0:
escalation_text = (
"✅ **Escalation Checklist Completed:** No danger items reported.\n"
"🧭 **Escalation potential estimated from detected message patterns only.**\n"
f"• Pattern Risk: {pattern_escalation_risk}\n"
f"• Checklist Risk: None reported\n"
f"• Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)"
)
hybrid_score = escalation_bump
logger.debug("Generated no-risk escalation text")
else:
hybrid_score = escalation_score + escalation_bump
escalation_text = (
f"📈 **Escalation Potential: {escalation_risk} ({hybrid_score}/29)**\n"
"📋 This score combines your safety checklist answers *and* detected high-risk behavior.\n"
f"• Pattern Risk: {pattern_escalation_risk}\n"
f"• Checklist Risk: {checklist_escalation_risk}\n"
f"• Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)"
)
logger.debug(f"Generated escalation text with hybrid score: {hybrid_score}")
# Calculate composite abuse score
logger.debug("\n--- Final Scores ---")
composite_abuse = int(round(sum(abuse_scores) / len(abuse_scores)))
logger.debug(f"Composite abuse score: {composite_abuse}")
# Get most common stage
most_common_stage = max(set(stages), key=stages.count)
stage_text = RISK_STAGE_LABELS[most_common_stage]
logger.debug(f"Most common stage: {most_common_stage}")
# Build final output
logger.debug("\n--- Generating Final Output ---")
out = f"Abuse Intensity: {composite_abuse}%\n"
out += "📊 This reflects the strength and severity of detected abuse patterns in the message(s).\n\n"
# Add risk assessment
risk_level = (
"Critical" if composite_abuse >= 85 or hybrid_score >= 20 else
"High" if composite_abuse >= 70 or hybrid_score >= 15 else
"Moderate" if composite_abuse >= 50 or hybrid_score >= 10 else
"Low"
)
logger.debug(f"Final risk level: {risk_level}")
risk_descriptions = {
"Critical": (
"🚨 **Risk Level: Critical**\n"
"Multiple severe abuse patterns detected. This situation shows signs of "
"dangerous escalation and immediate intervention may be needed."
),
"High": (
"⚠️ **Risk Level: High**\n"
"Strong abuse patterns detected. This situation shows concerning "
"signs of manipulation and control."
),
"Moderate": (
"⚡ **Risk Level: Moderate**\n"
"Concerning patterns detected. While not severe, these behaviors "
"indicate unhealthy relationship dynamics."
),
"Low": (
"📝 **Risk Level: Low**\n"
"Minor concerning patterns detected. While present, the detected "
"behaviors are subtle or infrequent."
)
}
out += risk_descriptions[risk_level]
out += f"\n\n{stage_text}"
# Add DARVO analysis
avg_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
logger.debug(f"Average DARVO score: {avg_darvo}")
if avg_darvo > 0.25:
level = "moderate" if avg_darvo < 0.65 else "high"
out += f"\n\n🎭 **DARVO Score: {avg_darvo}** → This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
# Add emotional tones
logger.debug("\n--- Adding Emotional Tones ---")
out += "\n\n🎭 **Emotional Tones Detected:**\n"
for i, tone in enumerate(tone_tags):
out += f"• Message {i+1}: *{tone or 'none'}*\n"
logger.debug(f"Message {i+1} tone: {tone}")
# Add threats section
logger.debug("\n--- Adding Threat Analysis ---")
if flat_threats:
out += "\n\n🚨 **Immediate Danger Threats Detected:**\n"
for t in set(flat_threats):
out += f"• \"{t}\"\n"
out += "\n⚠️ These phrases may indicate an imminent risk to physical safety."
logger.debug(f"Added {len(flat_threats)} threat warnings")
else:
out += "\n\n🧩 **Immediate Danger Threats:** None explicitly detected.\n"
out += "This does *not* rule out risk, but no direct threat phrases were matched."
logger.debug("No threats to add")
# Generate timeline
logger.debug("\n--- Generating Timeline ---")
pattern_labels = [
pats[0][0] if (pats := r[0][2]) else "none"
for r in results
]
timeline_image = generate_abuse_score_chart(dates_used, abuse_scores, pattern_labels)
logger.debug("Timeline generated successfully")
# Add escalation text
out += "\n\n" + escalation_text
logger.debug("\n====== ANALYSIS COMPLETE ======\n")
return out, timeline_image
except Exception as e:
logger.error(f"Error in analyze_composite: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
return "An error occurred during analysis.", None
# Gradio Interface Setup
def create_interface():
try:
textbox_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
none_box = gr.Checkbox(label="None of the above")
demo = gr.Interface(
fn=analyze_composite,
inputs=textbox_inputs + quiz_boxes + [none_box],
outputs=[
gr.Textbox(label="Results"),
gr.Image(label="Abuse Score Timeline", type="pil")
],
title="Abuse Pattern Detector + Escalation Quiz",
description=(
"Enter up to three messages that concern you. "
"For the most accurate results, include messages from a recent emotionally intense period."
),
flagging_mode="manual"
)
return demo
except Exception as e:
logger.error(f"Error creating interface: {e}")
raise
# Main execution
if __name__ == "__main__":
try:
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
except Exception as e:
logger.error(f"Failed to launch app: {e}")
raise