Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,219 Bytes
666c665 f6abe75 666c665 916e8c1 666c665 f6abe75 ede8fe9 666c665 b9947a5 666c665 b9947a5 666c665 f6abe75 666c665 f6abe75 666c665 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
import gradio as gr
import torch
import numpy as np
from transformers import pipeline, RobertaForSequenceClassification, RobertaTokenizer
from motif_tagging import detect_motifs
import re
import matplotlib.pyplot as plt
import io
from PIL import Image
from datetime import datetime
from transformers import pipeline as hf_pipeline # prevent name collision with gradio pipeline
def get_emotion_profile(text):
emotions = emotion_pipeline(text)
if isinstance(emotions, list) and isinstance(emotions[0], list):
emotions = emotions[0]
return {e['label'].lower(): round(e['score'], 3) for e in emotions}
# Emotion model (no retraining needed)
emotion_pipeline = hf_pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
top_k=6,
truncation=True
)
# --- Timeline Visualization Function ---
def generate_abuse_score_chart(dates, scores, labels):
import matplotlib.pyplot as plt
import io
from PIL import Image
from datetime import datetime
import re
# Determine if all entries are valid dates
if all(re.match(r"\d{4}-\d{2}-\d{2}", d) for d in dates):
parsed_x = [datetime.strptime(d, "%Y-%m-%d") for d in dates]
x_labels = [d.strftime("%Y-%m-%d") for d in parsed_x]
else:
parsed_x = list(range(1, len(dates) + 1))
x_labels = [f"Message {i+1}" for i in range(len(dates))]
fig, ax = plt.subplots(figsize=(8, 3))
ax.plot(parsed_x, scores, marker='o', linestyle='-', color='darkred', linewidth=2)
for x, y in zip(parsed_x, scores):
ax.text(x, y + 2, f"{int(y)}%", ha='center', fontsize=8, color='black')
ax.set_xticks(parsed_x)
ax.set_xticklabels(x_labels)
ax.set_xlabel("") # No axis label
ax.set_ylabel("Abuse Score (%)")
ax.set_ylim(0, 105)
ax.grid(True)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
return Image.open(buf)
# --- Abuse Model ---
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model_name = "SamanthaStorm/tether-multilabel-v3"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
LABELS = [
"recovery", "control", "gaslighting", "guilt tripping", "dismissiveness", "blame shifting",
"nonabusive","projection", "insults", "contradictory statements", "obscure language"
]
THRESHOLDS = {
"recovery": 0.4,
"control": 0.45,
"gaslighting": 0.25,
"guilt tripping": .20,
"dismissiveness": 0.25,
"blame shifting": 0.25,
"projection": 0.25,
"insults": 0.05,
"contradictory statements": 0.25,
"obscure language": 0.25,
"nonabusive": 1.0
}
PATTERN_WEIGHTS = {
"recovery": 0.7,
"control": 1.4,
"gaslighting": 1.50,
"guilt tripping": 1.2,
"dismissiveness": 0.9,
"blame shifting": 0.8,
"projection": 0.5,
"insults": 1.4,
"contradictory statements": 1.0,
"obscure language": 0.9,
"nonabusive": 0.0
}
ESCALATION_RISKS = {
"blame shifting": "low",
"contradictory statements": "moderate",
"control": "high",
"dismissiveness": "moderate",
"gaslighting": "moderate",
"guilt tripping": "moderate",
"insults": "moderate",
"obscure language": "low",
"projection": "low",
"recovery phase": "low"
}
RISK_STAGE_LABELS = {
1: "🌀 Risk Stage: Tension-Building\nThis message reflects rising emotional pressure or subtle control attempts.",
2: "🔥 Risk Stage: Escalation\nThis message includes direct or aggressive patterns, suggesting active harm.",
3: "🌧️ Risk Stage: Reconciliation\nThis message reflects a reset attempt—apologies or emotional repair without accountability.",
4: "🌸 Risk Stage: Calm / Honeymoon\nThis message appears supportive but may follow prior harm, minimizing it."
}
ESCALATION_QUESTIONS = [
("Partner has access to firearms or weapons", 4),
("Partner threatened to kill you", 3),
("Partner threatened you with a weapon", 3),
("Partner has ever choked you, even if you considered it consensual at the time", 4),
("Partner injured or threatened your pet(s)", 3),
("Partner has broken your things, punched or kicked walls, or thrown things ", 2),
("Partner forced or coerced you into unwanted sexual acts", 3),
("Partner threatened to take away your children", 2),
("Violence has increased in frequency or severity", 3),
("Partner monitors your calls/GPS/social media", 2)
]
def get_emotional_tone_tag(emotions, sentiment, patterns, abuse_score):
sadness = emotions.get("sadness", 0)
joy = emotions.get("joy", 0)
neutral = emotions.get("neutral", 0)
disgust = emotions.get("disgust", 0)
anger = emotions.get("anger", 0)
fear = emotions.get("fear", 0)
disgust = emotions.get("disgust", 0)
# 1. Performative Regret
if (
sadness > 0.4 and
any(p in patterns for p in ["blame shifting", "guilt tripping", "recovery phase"]) and
(sentiment == "undermining" or abuse_score > 40)
):
return "performative regret"
# 2. Coercive Warmth
if (
(joy > 0.3 or sadness > 0.4) and
any(p in patterns for p in ["control", "gaslighting"]) and
sentiment == "undermining"
):
return "coercive warmth"
# 3. Cold Invalidation
if (
(neutral + disgust) > 0.5 and
any(p in patterns for p in ["dismissiveness", "projection", "obscure language"]) and
sentiment == "undermining"
):
return "cold invalidation"
# 4. Genuine Vulnerability
if (
(sadness + fear) > 0.5 and
sentiment == "supportive" and
all(p in ["recovery phase"] for p in patterns)
):
return "genuine vulnerability"
# 5. Emotional Threat
if (
(anger + disgust) > 0.5 and
any(p in patterns for p in ["control", "insults", "dismissiveness"]) and
sentiment == "undermining"
):
return "emotional threat"
# 6. Weaponized Sadness
if (
sadness > 0.6 and
any(p in patterns for p in ["guilt tripping", "projection"]) and
sentiment == "undermining"
):
return "weaponized sadness"
# 7. Toxic Resignation
if (
neutral > 0.5 and
any(p in patterns for p in ["dismissiveness", "obscure language"]) and
sentiment == "undermining"
):
return "toxic resignation"
# 8. Aggressive Dismissal
if (
anger > 0.5 and
any(p in patterns for p in ["aggression", "insults", "control"]) and
sentiment == "undermining"
):
return "aggressive dismissal"
# 9. Deflective Hostility
if (
(0.2 < anger < 0.7 or 0.2 < disgust < 0.7) and
any(p in patterns for p in ["deflection", "projection"]) and
sentiment == "undermining"
):
return "deflective hostility"
# 10. Mocking Detachment
if (
(neutral + joy) > 0.5 and
any(p in patterns for p in ["mockery", "insults", "projection"]) and
sentiment == "undermining"
):
return "mocking detachment"
# 11. Contradictory Gaslight
if (
(joy + anger + sadness) > 0.5 and
any(p in patterns for p in ["gaslighting", "contradictory statements"]) and
sentiment == "undermining"
):
return "contradictory gaslight"
# 12. Calculated Neutrality
if (
neutral > 0.6 and
any(p in patterns for p in ["obscure language", "deflection", "dismissiveness"]) and
sentiment == "undermining"
):
return "calculated neutrality"
# 13. Forced Accountability Flip
if (
(anger + disgust) > 0.5 and
any(p in patterns for p in ["blame shifting", "manipulation", "projection"]) and
sentiment == "undermining"
):
return "forced accountability flip"
# 14. Conditional Affection
if (
joy > 0.4 and
any(p in patterns for p in ["apology baiting", "control", "recovery phase"]) and
sentiment == "undermining"
):
return "conditional affection"
if (
(anger + disgust) > 0.5 and
any(p in patterns for p in ["blame shifting", "projection", "deflection"]) and
sentiment == "undermining"
):
return "forced accountability flip"
# Emotional Instability Fallback
if (
(anger + sadness + disgust) > 0.6 and
sentiment == "undermining"
):
return "emotional instability"
return None
# 🔄 New DARVO score model (regression-based)
from torch.nn.functional import sigmoid
import torch
# Load your trained DARVO regressor from Hugging Face Hub
darvo_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1")
darvo_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1", use_fast=False)
darvo_model.eval()
def predict_darvo_score(text):
inputs = darvo_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
logits = darvo_model(**inputs).logits
score = sigmoid(logits).item()
return round(score, 4) # Rounded for display/output
def detect_weapon_language(text):
weapon_keywords = [
"knife", "knives", "stab", "cut you", "cutting",
"gun", "shoot", "rifle", "firearm", "pistol",
"bomb", "blow up", "grenade", "explode",
"weapon", "armed", "loaded", "kill you", "take you out"
]
text_lower = text.lower()
return any(word in text_lower for word in weapon_keywords)
def get_risk_stage(patterns, sentiment):
if "insults" in patterns:
return 2
elif "recovery phase" in patterns:
return 3
elif "control" in patterns or "guilt tripping" in patterns:
return 1
elif sentiment == "supportive" and any(p in patterns for p in ["projection", "dismissiveness"]):
return 4
return 1
def generate_risk_snippet(abuse_score, top_label, escalation_score, stage):
import re
# Extract aggression score if aggression is detected
if isinstance(top_label, str) and "aggression" in top_label.lower():
try:
match = re.search(r"\(?(\d+)\%?\)?", top_label)
aggression_score = int(match.group(1)) / 100 if match else 0
except:
aggression_score = 0
else:
aggression_score = 0
# Revised risk logic
if abuse_score >= 85 or escalation_score >= 16:
risk_level = "high"
elif abuse_score >= 60 or escalation_score >= 8 or aggression_score >= 0.25:
risk_level = "moderate"
elif stage == 2 and abuse_score >= 40:
risk_level = "moderate"
else:
risk_level = "low"
if isinstance(top_label, str) and " – " in top_label:
pattern_label, pattern_score = top_label.split(" – ")
else:
pattern_label = str(top_label) if top_label is not None else "Unknown"
pattern_score = ""
WHY_FLAGGED = {
"control": "This message may reflect efforts to restrict someone’s autonomy, even if it's framed as concern or care.",
"gaslighting": "This message could be manipulating someone into questioning their perception or feelings.",
"dismissiveness": "This message may include belittling, invalidating, or ignoring the other person’s experience.",
"insults": "Direct insults often appear in escalating abusive dynamics and can erode emotional safety.",
"blame shifting": "This message may redirect responsibility to avoid accountability, especially during conflict.",
"guilt tripping": "This message may induce guilt in order to control or manipulate behavior.",
"recovery phase": "This message may be part of a tension-reset cycle, appearing kind but avoiding change.",
"projection": "This message may involve attributing the abuser’s own behaviors to the victim.",
"contradictory statements": "This message may contain internal contradictions used to confuse, destabilize, or deflect responsibility.",
"obscure language": "This message may use overly formal, vague, or complex language to obscure meaning or avoid accountability.",
"default": "This message contains language patterns that may affect safety, clarity, or emotional autonomy."
}
explanation = WHY_FLAGGED.get(pattern_label.lower(), WHY_FLAGGED["default"])
base = f"\n\n🛑 Risk Level: {risk_level.capitalize()}\n"
base += f"This message shows strong indicators of **{pattern_label}**. "
if risk_level == "high":
base += "The language may reflect patterns of emotional control, even when expressed in soft or caring terms.\n"
elif risk_level == "moderate":
base += "There are signs of emotional pressure or verbal aggression that may escalate if repeated.\n"
else:
base += "The message does not strongly indicate abuse, but it's important to monitor for patterns.\n"
base += f"\n💡 *Why this might be flagged:*\n{explanation}\n"
base += f"\nDetected Pattern: **{pattern_label} ({pattern_score})**\n"
base += "🧠 You can review the pattern in context. This tool highlights possible dynamics—not judgments."
return base
# --- Step X: Detect Immediate Danger Threats ---
THREAT_MOTIFS = [
"i'll kill you", "i’m going to hurt you", "you’re dead", "you won't survive this",
"i’ll break your face", "i'll bash your head in", "i’ll snap your neck",
"i’ll come over there and make you shut up", "i'll knock your teeth out",
"you’re going to bleed", "you want me to hit you?", "i won’t hold back next time",
"i swear to god i’ll beat you", "next time, i won’t miss", "i’ll make you scream",
"i know where you live", "i'm outside", "i’ll be waiting", "i saw you with him",
"you can’t hide from me", "i’m coming to get you", "i'll find you", "i know your schedule",
"i watched you leave", "i followed you home", "you'll regret this", "you’ll be sorry",
"you’re going to wish you hadn’t", "you brought this on yourself", "don’t push me",
"you have no idea what i’m capable of", "you better watch yourself",
"i don’t care what happens to you anymore", "i’ll make you suffer", "you’ll pay for this",
"i’ll never let you go", "you’re nothing without me", "if you leave me, i’ll kill myself",
"i'll ruin you", "i'll tell everyone what you did", "i’ll make sure everyone knows",
"i’m going to destroy your name", "you’ll lose everyone", "i’ll expose you",
"your friends will hate you", "i’ll post everything", "you’ll be cancelled",
"you’ll lose everything", "i’ll take the house", "i’ll drain your account",
"you’ll never see a dime", "you’ll be broke when i’m done", "i’ll make sure you lose your job",
"i’ll take your kids", "i’ll make sure you have nothing", "you can’t afford to leave me",
"don't make me do this", "you know what happens when i’m mad", "you’re forcing my hand",
"if you just behaved, this wouldn’t happen", "this is your fault",
"you’re making me hurt you", "i warned you", "you should have listened"
]
def compute_abuse_score(matched_scores, sentiment):
if not matched_scores:
return 0
# Weighted average of passed patterns
weighted_total = sum(score * weight for _, score, weight in matched_scores)
weight_sum = sum(weight for _, _, weight in matched_scores)
base_score = (weighted_total / weight_sum) * 100
# Boost for pattern count
pattern_count = len(matched_scores)
scale = 1.0 + 0.25 * max(0, pattern_count - 1) # 1.25x for 2, 1.5x for 3+
scaled_score = base_score * scale
# Pattern floors
FLOORS = {
"control": 40,
"gaslighting": 30,
"insults": 25,
"aggression": 40
}
floor = max(FLOORS.get(label, 0) for label, _, _ in matched_scores)
adjusted_score = max(scaled_score, floor)
# Sentiment tweak
if sentiment == "undermining" and adjusted_score < 50:
adjusted_score += 10
return min(adjusted_score, 100)
def analyze_single_message(text, thresholds):
motif_hits, matched_phrases = detect_motifs(text)
# Get emotion profile
emotion_profile = get_emotion_profile(text)
sentiment_score = emotion_profile.get("anger", 0) + emotion_profile.get("disgust", 0)
# Get model scores
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
# Sentiment override if neutral is high while critical thresholds are passed
if emotion_profile.get("neutral", 0) > 0.85 and any(
scores[LABELS.index(l)] > thresholds[l]
for l in ["control", "blame shifting"]
):
sentiment = "undermining"
else:
sentiment = "undermining" if sentiment_score > 0.25 else "supportive"
weapon_flag = detect_weapon_language(text)
adjusted_thresholds = {
k: v + 0.05 if sentiment == "supportive" else v
for k, v in thresholds.items()
}
darvo_score = predict_darvo_score(text)
threshold_labels = [
label for label, score in zip(LABELS, scores)
if score > adjusted_thresholds[label]
]
top_patterns = sorted(
[(label, score) for label, score in zip(LABELS, scores)],
key=lambda x: x[1],
reverse=True
)[:2]
# Post-threshold validation: strip recovery if it occurs with undermining sentiment
if "recovery" in threshold_labels and tone_tag == "forced accountability flip":
threshold_labels.remove("recovery")
top_patterns = [p for p in top_patterns if p[0] != "recovery"]
print("⚠️ Removing 'recovery' due to undermining sentiment (not genuine repair)")
matched_scores = [
(label, score, PATTERN_WEIGHTS.get(label, 1.0))
for label, score in zip(LABELS, scores)
if score > adjusted_thresholds[label]
]
abuse_score_raw = compute_abuse_score(matched_scores, sentiment)
abuse_score = abuse_score_raw
# Risk stage logic
stage = get_risk_stage(threshold_labels, sentiment) if threshold_labels else 1
if weapon_flag and stage < 2:
stage = 2
if weapon_flag:
abuse_score_raw = min(abuse_score_raw + 25, 100)
abuse_score = min(
abuse_score_raw,
100 if "control" in threshold_labels else 95
)
# Tag must happen after abuse score is finalized
tone_tag = get_emotional_tone_tag(emotion_profile, sentiment, threshold_labels, abuse_score)
# ---- Profanity + Anger Override Logic ----
profane_words = {"fuck", "fucking", "bitch", "shit", "cunt", "ho", "asshole", "dick", "whore", "slut"}
tokens = set(text.lower().split())
has_profane = any(word in tokens for word in profane_words)
anger_score = emotion_profile.get("Anger", 0)
short_text = len(tokens) <= 10
insult_score = next((s for l, s in top_patterns if l == "insults"), 0)
if has_profane and anger_score > 0.75 and short_text:
print("⚠️ Profanity + Anger Override Triggered")
top_patterns = sorted(top_patterns, key=lambda x: x[1], reverse=True)
if top_patterns[0][0] != "insults":
top_patterns.insert(0, ("insults", insult_score))
if "insults" not in threshold_labels:
threshold_labels.append("insults")
top_patterns = [("insults", insult_score)] + [p for p in top_patterns if p[0] != "insults"]
# Debug
print(f"Emotional Tone Tag: {tone_tag}")
# Debug
print(f"Emotional Tone Tag: {tone_tag}")
print("Emotion Profile:")
for emotion, score in emotion_profile.items():
print(f" {emotion.capitalize():10}: {score}")
print("\n--- Debug Info ---")
print(f"Text: {text}")
print(f"Sentiment (via emotion): {sentiment} (score: {round(sentiment_score, 3)})")
print("Abuse Pattern Scores:")
for label, score in zip(LABELS, scores):
passed = "✅" if score > adjusted_thresholds[label] else "❌"
print(f" {label:25} → {score:.3f} {passed}")
print(f"Matched for score: {[(l, round(s, 3)) for l, s, _ in matched_scores]}")
print(f"Abuse Score Raw: {round(abuse_score_raw, 1)}")
print("------------------\n")
return abuse_score, threshold_labels, top_patterns, {"label": sentiment}, stage, darvo_score, tone_tag
def analyze_composite(msg1, msg2, msg3, *answers_and_none):
from collections import Counter
none_selected_checked = answers_and_none[-1]
responses_checked = any(answers_and_none[:-1])
none_selected = not responses_checked and none_selected_checked
escalation_score = None
if not none_selected:
escalation_score = sum(w for (_, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]) if a)
messages = [msg1, msg2, msg3]
active = [(m, f"Message {i+1}") for i, m in enumerate(messages) if m.strip()]
if not active:
return "Please enter at least one message."
# Flag any threat phrases present in the messages
import re
def normalize(text):
import unicodedata
text = text.lower().strip()
text = unicodedata.normalize("NFKD", text) # handles curly quotes
text = text.replace("’", "'") # smart to straight
return re.sub(r"[^a-z0-9 ]", "", text)
def detect_threat_motifs(message, motif_list):
norm_msg = normalize(message)
return [
motif for motif in motif_list
if normalize(motif) in norm_msg
]
# Collect matches per message
immediate_threats = [detect_threat_motifs(m, THREAT_MOTIFS) for m, _ in active]
flat_threats = [t for sublist in immediate_threats for t in sublist]
threat_risk = "Yes" if flat_threats else "No"
results = [(analyze_single_message(m, THRESHOLDS.copy()), d) for m, d in active]
abuse_scores = [r[0][0] for r in results]
stages = [r[0][4] for r in results]
darvo_scores = [r[0][5] for r in results]
tone_tags = [r[0][6] for r in results]
dates_used = [r[1] for r in results]
predicted_labels = [label for r in results for label, _ in r[0][2]]
high = {'control'}
moderate = {'gaslighting', 'dismissiveness', 'obscure language', 'insults', 'contradictory statements', 'guilt tripping'}
low = {'blame shifting', 'projection', 'recovery phase'}
counts = {'high': 0, 'moderate': 0, 'low': 0}
for label in predicted_labels:
if label in high:
counts['high'] += 1
elif label in moderate:
counts['moderate'] += 1
elif label in low:
counts['low'] += 1
# Pattern escalation logic
pattern_escalation_risk = "Low"
if counts['high'] >= 2 and counts['moderate'] >= 2:
pattern_escalation_risk = "Critical"
elif (counts['high'] >= 2 and counts['moderate'] >= 1) or (counts['moderate'] >= 3) or (counts['high'] >= 1 and counts['moderate'] >= 2):
pattern_escalation_risk = "High"
elif (counts['moderate'] == 2) or (counts['high'] == 1 and counts['moderate'] == 1) or (counts['moderate'] == 1 and counts['low'] >= 2) or (counts['high'] == 1 and sum(counts.values()) == 1):
pattern_escalation_risk = "Moderate"
checklist_escalation_risk = "Unknown" if escalation_score is None else (
"Critical" if escalation_score >= 20 else
"Moderate" if escalation_score >= 10 else
"Low"
)
escalation_bump = 0
for result, _ in results:
abuse_score, _, _, sentiment, stage, darvo_score, tone_tag = result
if darvo_score > 0.65:
escalation_bump += 3
if tone_tag in ["forced accountability flip", "emotional threat"]:
escalation_bump += 2
if abuse_score > 80:
escalation_bump += 2
if stage == 2:
escalation_bump += 3
def rank(label):
return {"Low": 0, "Moderate": 1, "High": 2, "Critical": 3, "Unknown": 0}.get(label, 0)
combined_score = rank(pattern_escalation_risk) + rank(checklist_escalation_risk) + escalation_bump
escalation_risk = (
"Critical" if combined_score >= 6 else
"High" if combined_score >= 4 else
"Moderate" if combined_score >= 2 else
"Low"
)
if escalation_score is None:
escalation_text = "🚫 **Escalation Potential: Unknown** (Checklist not completed)\n⚠️ This section was not completed. Escalation potential is estimated using message data only.\n"
hybrid_score = 0
else:
hybrid_score = escalation_score + escalation_bump
escalation_text = f"📈 **Escalation Potential: {escalation_risk} ({hybrid_score}/29)**\n"
escalation_text += "📋 This score combines your safety checklist answers *and* detected high-risk behavior.\n"
escalation_text += f"• Pattern Risk: {pattern_escalation_risk}\n"
escalation_text += f"• Checklist Risk: {checklist_escalation_risk}\n"
escalation_text += f"• Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)"
# Composite Abuse Score
composite_abuse_scores = []
for result, _ in results:
_, _, top_patterns, sentiment, _, _, _ = result
matched_scores = [(label, score, PATTERN_WEIGHTS.get(label, 1.0)) for label, score in top_patterns]
final_score = compute_abuse_score(matched_scores, sentiment["label"])
composite_abuse_scores.append(final_score)
composite_abuse = int(round(sum(composite_abuse_scores) / len(composite_abuse_scores)))
most_common_stage = max(set(stages), key=stages.count)
stage_text = RISK_STAGE_LABELS[most_common_stage]
# Derive top label list for each message
top_labels = [r[0][1][0] if r[0][1] else r[0][2][0][0] for r in results]
avg_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
darvo_blurb = ""
if avg_darvo > 0.25:
level = "moderate" if avg_darvo < 0.65 else "high"
darvo_blurb = f"\n\n🎭 **DARVO Score: {avg_darvo}** → This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
out = f"Abuse Intensity: {composite_abuse}%\n"
out += "📊 This reflects the strength and severity of detected abuse patterns in the message(s).\n\n"
out += generate_risk_snippet(composite_abuse, top_labels[0], hybrid_score, most_common_stage)
out += f"\n\n{stage_text}"
out += darvo_blurb
out += "\n\n🎭 **Emotional Tones Detected:**\n"
for i, tone in enumerate(tone_tags):
out += f"• Message {i+1}: *{tone or 'none'}*\n"
# --- Add Immediate Danger Threats section
if flat_threats:
out += "\n\n🚨 **Immediate Danger Threats Detected:**\n"
for t in set(flat_threats):
out += f"• \"{t}\"\n"
out += "\n⚠️ These phrases may indicate an imminent risk to physical safety."
else:
out += "\n\n🧩 **Immediate Danger Threats:** None explicitly detected.\n"
out += "This does *not* rule out risk, but no direct threat phrases were matched."
pattern_labels = [r[0][2][0][0] for r in results]
timeline_image = generate_abuse_score_chart(dates_used, abuse_scores, pattern_labels)
out += "\n\n" + escalation_text
return out, timeline_image
textbox_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
none_box = gr.Checkbox(label="None of the above")
iface = gr.Interface(
fn=analyze_composite,
inputs=textbox_inputs + quiz_boxes + [none_box],
outputs=[
gr.Textbox(label="Results"),
gr.Image(label="Abuse Score Timeline", type="pil")
],
title="Abuse Pattern Detector + Escalation Quiz",
description="Enter up to three messages that concern you. For the most accurate results, enter messages that happened during a recent time period that felt emotionally intense or 'off.'",
allow_flagging="manual"
)
if __name__ == "__main__":
iface.launch()
|