Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -35,8 +35,7 @@ model.eval()
|
|
| 35 |
# transforms.Resize((512,640)),
|
| 36 |
# transforms.ToTensor()
|
| 37 |
# ])
|
| 38 |
-
transform = transforms.Compose([
|
| 39 |
-
transforms.ToPILImage(), # Ensure input is a PIL image
|
| 40 |
transforms.Resize((512, 640)),
|
| 41 |
transforms.ToTensor()
|
| 42 |
])
|
|
@@ -49,20 +48,24 @@ OBJECT_NAMES = ['enemies']
|
|
| 49 |
|
| 50 |
|
| 51 |
def detect_objects_in_image(image):
|
|
|
|
| 52 |
print(type(image))
|
| 53 |
print(np.ndarray.view(image))
|
| 54 |
-
|
|
|
|
| 55 |
print(image.size)
|
| 56 |
if isinstance(image, np.ndarray):
|
| 57 |
print("Converting NumPy array to PIL Image")
|
| 58 |
image = Image.fromarray(image)
|
| 59 |
print(image.size)
|
|
|
|
| 60 |
orig_w, orig_h = image.size
|
| 61 |
print("passed1")
|
| 62 |
|
| 63 |
-
|
| 64 |
with torch.no_grad():
|
| 65 |
pred = model(img_tensor)[0]
|
|
|
|
| 66 |
print("Passed2")
|
| 67 |
|
| 68 |
if isinstance(pred[0], torch.Tensor):
|
|
|
|
| 35 |
# transforms.Resize((512,640)),
|
| 36 |
# transforms.ToTensor()
|
| 37 |
# ])
|
| 38 |
+
transform = transforms.Compose([ # Ensure input is a PIL image
|
|
|
|
| 39 |
transforms.Resize((512, 640)),
|
| 40 |
transforms.ToTensor()
|
| 41 |
])
|
|
|
|
| 48 |
|
| 49 |
|
| 50 |
def detect_objects_in_image(image):
|
| 51 |
+
|
| 52 |
print(type(image))
|
| 53 |
print(np.ndarray.view(image))
|
| 54 |
+
|
| 55 |
+
|
| 56 |
print(image.size)
|
| 57 |
if isinstance(image, np.ndarray):
|
| 58 |
print("Converting NumPy array to PIL Image")
|
| 59 |
image = Image.fromarray(image)
|
| 60 |
print(image.size)
|
| 61 |
+
img_tensor = transform(image).unsqueeze(0)
|
| 62 |
orig_w, orig_h = image.size
|
| 63 |
print("passed1")
|
| 64 |
|
| 65 |
+
print(torch.no_grad())
|
| 66 |
with torch.no_grad():
|
| 67 |
pred = model(img_tensor)[0]
|
| 68 |
+
|
| 69 |
print("Passed2")
|
| 70 |
|
| 71 |
if isinstance(pred[0], torch.Tensor):
|