Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Import the correct exception class | |
from huggingface_hub.utils import HfHubHTTPError | |
import os | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
**Note:** You might need to authenticate with Hugging Face for this to work reliably. | |
Run `huggingface-cli login` in your terminal or set the HUGGING_FACE_HUB_TOKEN environment variable. | |
Alternatively, pass your token directly: InferenceClient(token="hf_YOUR_TOKEN") | |
""" | |
# Initialize the Inference Client | |
# It will try to use HUGGING_FACE_HUB_TOKEN environment variable or cached login | |
try: | |
# You might need to provide a token if you haven't logged in via CLI | |
# token = os.getenv("HUGGING_FACE_HUB_TOKEN") | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=token) | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
except Exception as e: | |
print(f"Error initializing InferenceClient: {e}") | |
raise ValueError("Could not initialize InferenceClient. Ensure you are logged in or provide a token.") from e | |
def respond( | |
message: str, | |
history: list[tuple[str | None, str | None]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
""" | |
Generates a response using the Hugging Face Inference API. | |
Args: | |
message: The user's input message. | |
history: A list of tuples representing the conversation history. | |
Each tuple is (user_message, bot_message). | |
system_message: The system prompt to guide the model. | |
max_tokens: The maximum number of new tokens to generate. | |
temperature: Controls randomness (higher = more random). | |
top_p: Nucleus sampling parameter. | |
Yields: | |
The generated response incrementally. | |
""" | |
messages = [{"role": "system", "content": system_message}] | |
# Add conversation history | |
for user_msg, bot_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if bot_msg: | |
messages.append({"role": "assistant", "content": bot_msg}) | |
# Add the latest user message | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
try: | |
# Start streaming the response | |
for msg_chunk in client.chat_completion( | |
messages=messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
# Check if there's content in the delta | |
token = msg_chunk.choices[0].delta.content | |
if token: # Add check for empty/None token | |
response += token | |
yield response # Yield the accumulated response so far | |
# Catch HTTP errors from the Hugging Face Hub API | |
except HfHubHTTPError as e: | |
error_message = f"Inference API Error: {e}" | |
# Try to get more details from the response if available | |
if e.response: | |
try: | |
details = e.response.json() | |
error_message += f"\nDetails: {details.get('error', 'N/A')}" | |
except Exception: # Catch potential JSON decoding errors | |
pass # Keep the original error message | |
print(error_message) | |
yield f"Sorry, I encountered an error communicating with the model service: {e}" # Display a user-friendly message | |
# Catch other potential errors | |
except Exception as e: | |
print(f"An unexpected error occurred: {e}") | |
yield f"Sorry, an unexpected error occurred: {e}" | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
chatbot=gr.Chatbot(height=400), # Adjust chatbot height if desired | |
textbox=gr.Textbox(placeholder="Ask me anything...", container=False, scale=7), | |
title="Zephyr 7B Beta Chat", | |
description="Chat with the Zephyr 7B Beta model using the Hugging Face Inference API.", | |
theme="soft", # Optional: Apply a theme | |
examples=[ | |
["Hello!"], | |
["Explain the concept of Large Language Models in simple terms."], | |
["Write a short poem about the moon."], | |
], | |
cache_examples=False, # Set to True to cache example results | |
retry_btn="Retry", | |
undo_btn="Undo", | |
clear_btn="Clear", | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly and helpful chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), # Note: Max temp often capped lower (e.g., 1.0 or 2.0) | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
additional_inputs_accordion=gr.Accordion(label="Advanced Options", open=False), # Group additional inputs | |
) | |
if __name__ == "__main__": | |
# Ensure huggingface_hub library is up-to-date: pip install --upgrade huggingface_hub | |
print("Launching Gradio Interface...") | |
demo.launch() |