File size: 1,840 Bytes
e04246a
 
 
43de95d
 
 
f311bae
c137ca3
e04246a
 
f311bae
 
 
 
 
 
e04246a
 
 
f311bae
a8e97ac
 
f311bae
 
e04246a
 
 
43de95d
c137ca3
f311bae
 
 
 
 
 
 
 
 
 
e04246a
a8e97ac
43de95d
 
 
f311bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04246a
 
 
43de95d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for user_msg, assistant_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})

    messages.append({"role": "user", "content": message})

    response = ""

    for event in client.chat_completion(
        messages,
        max_tokens=int(max_tokens),
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        if event.token is not None:
            response += event.token
            yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
with gr.Blocks() as demo:
    chatbot = gr.ChatInterface(
        respond,
        additional_inputs=[
            gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
            gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
            gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
            gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-p (nucleus sampling)",
            ),
        ],
    )


if __name__ == "__main__":
    demo.launch()