app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
-
from transformers import AutoProcessor,
|
5 |
import os
|
6 |
|
7 |
# Check if we're running on CPU or GPU
|
@@ -22,21 +22,19 @@ except Exception as e:
|
|
22 |
# Load base model - use the smallest possible model for CPU
|
23 |
try:
|
24 |
# Try loading the smallest BLIP model
|
25 |
-
model =
|
26 |
"Salesforce/blip-image-captioning-base",
|
27 |
-
device_map=None,
|
28 |
torch_dtype=torch.float32 # Use float32 for CPU compatibility
|
29 |
)
|
30 |
print("Loaded base BLIP model")
|
31 |
except Exception as e:
|
32 |
print(f"Error loading model: {e}")
|
33 |
-
# If that fails, load
|
34 |
-
model =
|
35 |
"Salesforce/blip-image-captioning-base",
|
36 |
-
device_map=None,
|
37 |
low_cpu_mem_usage=True
|
38 |
)
|
39 |
-
print("Loaded fallback model")
|
40 |
|
41 |
# Move model to device if needed
|
42 |
model = model.to(device)
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
+
from transformers import AutoProcessor, BlipForConditionalGeneration, BlipProcessor
|
5 |
import os
|
6 |
|
7 |
# Check if we're running on CPU or GPU
|
|
|
22 |
# Load base model - use the smallest possible model for CPU
|
23 |
try:
|
24 |
# Try loading the smallest BLIP model
|
25 |
+
model = BlipForConditionalGeneration.from_pretrained(
|
26 |
"Salesforce/blip-image-captioning-base",
|
|
|
27 |
torch_dtype=torch.float32 # Use float32 for CPU compatibility
|
28 |
)
|
29 |
print("Loaded base BLIP model")
|
30 |
except Exception as e:
|
31 |
print(f"Error loading model: {e}")
|
32 |
+
# If that fails, load with low memory usage
|
33 |
+
model = BlipForConditionalGeneration.from_pretrained(
|
34 |
"Salesforce/blip-image-captioning-base",
|
|
|
35 |
low_cpu_mem_usage=True
|
36 |
)
|
37 |
+
print("Loaded fallback model with low memory settings")
|
38 |
|
39 |
# Move model to device if needed
|
40 |
model = model.to(device)
|