Spaces:
Sleeping
Sleeping
File size: 9,176 Bytes
95e1523 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
# Create image # Install libraries
# !pip install -q git+https://github.com/huggingface/peft.git transformers bitsandbytes datasets
# # Fix fsspec version mismatch (if needed)
# !pip install fsspec==2025.3.0
# from google.colab import files
# files.upload() # Upload kaggle.json here
# # Move kaggle.json to the right location
# !mkdir -p ~/.kaggle
# !cp kaggle.json ~/.kaggle/
# !chmod 600 ~/.kaggle/kaggle.json
# # Download the dataset
# !kaggle datasets download -d adityajn105/flickr8k --force
# # Unzip it
# !unzip -q flickr8k.zip -d flickr8k
# DATASET_PATH = '/content/flickr8k'
# CAPTIONS_FILE = os.path.join(DATASET_PATH, 'captions.txt')
# IMAGES_PATH = os.path.join(DATASET_PATH, 'Images/')
# import os
# import pandas as pd
# from PIL import Image
# from torch.utils.data import Dataset, DataLoader
# import torch
# # Load and process captions
# df = pd.read_csv(CAPTIONS_FILE, sep=',', names=["image", "caption"])
# df["caption"] = df["caption"][1:]
# df["caption"]
# df = df.dropna().reset_index(drop=True)
# df
# df = df[:8000]
# from transformers import AutoProcessor
# from PIL import Image
# processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
# class Flickr8kDataset(Dataset):
# def __init__(self, dataframe, image_dir, processor):
# self.dataframe = dataframe
# self.image_dir = image_dir
# self.processor = processor
# def __len__(self):
# return len(self.dataframe)
# def __getitem__(self, idx):
# row = self.dataframe.iloc[idx]
# image_path = os.path.join(self.image_dir, row["image"])
# caption = row["caption"]
# # Load image
# image = Image.open(image_path).convert('RGB')
# # Process image
# encoding = self.processor(images=image, return_tensors="pt")
# encoding = {k: v.squeeze() for k, v in encoding.items()}
# encoding["text"] = caption
# return encoding
# def collate_fn(batch):
# processed_batch = {}
# for key in batch[0].keys():
# if key != "text":
# processed_batch[key] = torch.stack([example[key] for example in batch])
# else:
# text_inputs = processor.tokenizer(
# [example["text"] for example in batch], padding=True, return_tensors="pt"
# )
# processed_batch["input_ids"] = text_inputs["input_ids"]
# processed_batch["attention_mask"] = text_inputs["attention_mask"]
# return processed_batch
# from transformers import Blip2ForConditionalGeneration
# from peft import LoraConfig, get_peft_model
# model = Blip2ForConditionalGeneration.from_pretrained(
# "ybelkada/blip2-opt-2.7b-fp16-sharded",
# device_map="auto",
# load_in_8bit=True
# )
# # Apply LoRA
# config = LoraConfig(
# r=16,
# lora_alpha=32,
# lora_dropout=0.05,
# bias="none",
# target_modules=["q_proj", "k_proj"]
# )
# model = get_peft_model(model, config)
# model.print_trainable_parameters()
# # Load dataset
# train_dataset = Flickr8kDataset(df, IMAGES_PATH, processor)
# train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=3, collate_fn=collate_fn)
# # Set up optimizer
# optimizer = torch.optim.Adam(model.parameters(), lr=5e-4)
# device = "cuda" if torch.cuda.is_available() else "cpu"
# model.train()
# # Training loop
# for epoch in range(1): # Use small epochs for testing, increase later
# print(f"Epoch: {epoch}")
# for idx, batch in enumerate(train_dataloader):
# input_ids = batch.pop("input_ids").to(device)
# pixel_values = batch.pop("pixel_values").to(device, torch.float16)
# outputs = model(input_ids=input_ids, pixel_values=pixel_values, labels=input_ids)
# loss = outputs.loss
# print(f"Batch {idx} Loss: {loss.item():.4f}")
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# # Example prediction
# sample_image = Image.open(os.path.join(IMAGES_PATH, df.iloc[0]["image"])).convert('RGB')
# inputs = processor(images=sample_image, return_tensors="pt").to(device, torch.float16)
# generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=25)
# caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# print("Generated caption:", caption)
# import matplotlib.pyplot as plt
# # Show the sample image with the generated caption
# plt.figure(figsize=(6,6))
# plt.imshow(sample_image)
# plt.axis("off")
# plt.title(f"Generated caption:\n{caption}", fontsize=12)
# plt.show()
# # Load a sample image
# sample_image = Image.open(os.path.join(IMAGES_PATH, df.iloc[15]["image"])).convert('RGB')
# # Prepare inputs
# inputs = processor(images=sample_image, return_tensors="pt").to(device, torch.float16)
# generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=25)
# # Decode caption
# caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# print("Generated caption:", caption)
# # Show image with caption
# import matplotlib.pyplot as plt
# plt.figure(figsize=(6,6))
# plt.imshow(sample_image)
# plt.axis("off")
# plt.title(f"Generated caption:\n{caption}", fontsize=12)
# plt.show()
# from PIL import Image
# import matplotlib.pyplot as plt
# import torch
# import io
# from google.colab import files # Only for Colab
# # Upload image
# uploaded = files.upload()
# # Get the uploaded file
# for filename in uploaded.keys():
# image_path = filename
# # Load the image
# sample_image = Image.open(image_path).convert('RGB')
# # Prepare inputs
# inputs = processor(images=sample_image, return_tensors="pt").to(device, torch.float16)
# # Generate caption
# generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=25)
# # Decode caption
# caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# print("Generated caption:", caption)
# # Show image with caption
# plt.figure(figsize=(6,6))
# plt.imshow(sample_image)
# plt.axis("off")
# plt.title(f"Generated caption:\n{caption}", fontsize=12)
# plt.show()
# !pip install evaluate pycocoevalcap --quiet
# import evaluate
# from tqdm import tqdm
# from PIL import Image
# import torch
# import os
# # Load metrics
# bleu = evaluate.load("bleu")
# df = pd.read_csv(CAPTIONS_FILE, sep=',', names=["image", "caption"])
# # Subset of data
# subset_df = df[8001:8092].reset_index(drop=True)
# # Prepare references and predictions
# references = {}
# predictions = []
# for idx in tqdm(range(len(subset_df))):
# image_name = subset_df.iloc[idx]['image']
# # Load image
# image_path = os.path.join(IMAGES_PATH, image_name)
# image = Image.open(image_path).convert('RGB')
# # Generate caption
# inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
# generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=25)
# predicted_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# # Save prediction
# predictions.append(predicted_caption)
# # Prepare ground-truth references
# if image_name not in references:
# gt = df[df['image'] == image_name]['caption'].tolist()
# references[image_name] = gt
# # Build reference and prediction lists for scoring
# gt_list = [references[name] for name in subset_df['image']]
# pred_list = predictions
# import evaluate
# from tqdm import tqdm
# from PIL import Image
# from pycocoevalcap.cider.cider import Cider
# from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer
# bleu = evaluate.load("bleu")
# df = pd.read_csv(CAPTIONS_FILE, sep=',', names=["image", "caption"])
# # Get subset
# subset_df = df[8001:8092].reset_index(drop=True)
# # Collect predictions and references
# predictions = []
# references = {}
# for idx in tqdm(range(len(subset_df))):
# row = subset_df.iloc[idx]
# image_name = row['image']
# image_path = os.path.join(IMAGES_PATH, image_name)
# image = Image.open(image_path).convert('RGB')
# inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
# generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=25)
# caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# predictions.append(caption)
# if image_name not in references:
# refs = df[df['image'] == image_name]['caption'].tolist()
# references[image_name] = refs
# # Prepare for BLEU
# gt_list = [references[name] for name in subset_df["image"]]
# pred_list = predictions
# bleu_score = bleu.compute(predictions=pred_list, references=gt_list)
# print("BLEU:", bleu_score)
# # Prepare COCO-style input
# gts = {}
# res = {}
# for i, img in enumerate(subset_df["image"]):
# gts[str(i)] = [{"caption": cap} for cap in references[img]]
# res[str(i)] = [{"caption": predictions[i]}]
# # Tokenize
# tokenizer = PTBTokenizer()
# gts_tokenized = tokenizer.tokenize(gts)
# res_tokenized = tokenizer.tokenize(res)
# # Compute CIDEr
# cider_scorer = Cider()
# cider_score, _ = cider_scorer.compute_score(gts_tokenized, res_tokenized)
# print("CIDEr:", cider_score)
|