Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,16 @@
|
|
1 |
import streamlit as st
|
2 |
-
from streamlit_webrtc import webrtc_streamer
|
3 |
import av
|
4 |
import os
|
5 |
from twilio.rest import Client
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
os.environ["TWILIO_ACCOUNT_SID"] = "ACf1e76f3fd6e9cbca940decc4ed443c20"
|
8 |
os.environ["TWILIO_AUTH_TOKEN"] = "56a1d1ee494933269fe042706392ac9f"
|
@@ -21,21 +29,105 @@ def get_ice_servers():
|
|
21 |
token = client.tokens.create()
|
22 |
|
23 |
return token.ice_servers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
|
|
|
|
25 |
def video_frame_callback(frame):
|
26 |
img = frame.to_ndarray(format="bgr24")
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
webrtc_streamer(
|
36 |
-
key="example",
|
37 |
-
video_frame_callback=video_frame_callback,
|
38 |
-
rtc_configuration={ "iceServers": get_ice_servers() }
|
39 |
-
)
|
40 |
|
|
|
41 |
|
|
|
1 |
import streamlit as st
|
2 |
+
from streamlit_webrtc import webrtc_streamer, WebRtcMode
|
3 |
import av
|
4 |
import os
|
5 |
from twilio.rest import Client
|
6 |
+
from streamlit_image_select import image_select
|
7 |
+
import cv2 as cv
|
8 |
+
import numpy as np
|
9 |
+
import math
|
10 |
+
from feat import Detector
|
11 |
+
from feat.utils import FEAT_EMOTION_COLUMNS
|
12 |
+
import torch
|
13 |
+
from PIL import Image
|
14 |
|
15 |
os.environ["TWILIO_ACCOUNT_SID"] = "ACf1e76f3fd6e9cbca940decc4ed443c20"
|
16 |
os.environ["TWILIO_AUTH_TOKEN"] = "56a1d1ee494933269fe042706392ac9f"
|
|
|
29 |
token = client.tokens.create()
|
30 |
|
31 |
return token.ice_servers
|
32 |
+
|
33 |
+
def eye_aspect_ratio(eye):
|
34 |
+
|
35 |
+
A = math.dist(eye[1], eye[5])
|
36 |
+
B = math.dist(eye[2], eye[4])
|
37 |
+
|
38 |
+
C = math.dist(eye[0], eye[3])
|
39 |
+
|
40 |
+
ear = (A + B) / (2.0 * C)
|
41 |
+
|
42 |
+
return ear
|
43 |
+
|
44 |
+
def detect_eyes(landmarks, img, threshold):
|
45 |
+
lm = landmarks
|
46 |
+
eyes = np.array(lm[0][0][36:48], np.int32)
|
47 |
+
|
48 |
+
left_eye = eyes[0:6]
|
49 |
+
right_eye = eyes[6:12]
|
50 |
+
ear = max(eye_aspect_ratio(left_eye), eye_aspect_ratio(right_eye))
|
51 |
+
left_eye = left_eye.reshape((-1,1,2))
|
52 |
+
right_eye = right_eye.reshape((-1,1,2))
|
53 |
+
cv.polylines(img, [left_eye], True, (0, 255, 255))
|
54 |
+
cv.polylines(img, [right_eye], True, (255, 0, 255))
|
55 |
+
|
56 |
+
if (ear > threshold):
|
57 |
+
return True
|
58 |
+
else:
|
59 |
+
return False
|
60 |
+
|
61 |
+
def proc_image(img, detector):
|
62 |
+
detected_faces = detector.detect_faces(img)
|
63 |
+
if (len(detected_faces[0]) < 1):
|
64 |
+
return img
|
65 |
+
detected_landmarks = detector.detect_landmarks(img, detected_faces)
|
66 |
+
detected_emotions = detector.detect_emotions(img, detected_faces, detected_landmarks)
|
67 |
+
is_eye_open = detect_eyes(detected_landmarks, img, 0.12)
|
68 |
+
eye_dict = {True: "Eyes Open", False: "Eyes Closed"}
|
69 |
+
|
70 |
+
em = detected_emotions[0]
|
71 |
+
em_labels = em.argmax(axis=1)
|
72 |
+
|
73 |
+
for face, label in zip(detected_faces[0], em_labels):
|
74 |
+
(x0, y0, x1, y1, p) = face
|
75 |
+
img = cv.rectangle(img, (int(x0), int(y0)), (int(x1), int(y1)), color = (0, 0, 255), thickness = 3)
|
76 |
+
cv.putText(img, FEAT_EMOTION_COLUMNS[label], (int(x0)-10, int(y0)-10), fontFace = 0, color = (0, 0, 255), thickness = 2, fontScale = 1)
|
77 |
+
cv.putText(img, eye_dict[is_eye_open], (0, 25), fontFace = 0, color = (0, 0, 255), thickness = 2, fontScale = 1)
|
78 |
+
|
79 |
+
return img
|
80 |
|
81 |
+
def image_processing(frame):
|
82 |
+
return proc_image(img, detector) if recog else img
|
83 |
+
|
84 |
def video_frame_callback(frame):
|
85 |
img = frame.to_ndarray(format="bgr24")
|
86 |
|
87 |
+
ann = proc_image(img, detector) if recog else img
|
88 |
+
|
89 |
+
return av.VideoFrame.from_ndarray(ann, format="bgr24")
|
90 |
+
|
91 |
+
detector = Detector(face_model="retinaface", landmark_model= "pfld", au_model = "xgb", emotion_model="resmasknet")
|
92 |
+
source = "Webcam"
|
93 |
+
recog = True
|
94 |
|
95 |
+
source = st.radio(
|
96 |
+
label = "Image source for emotion recognition",
|
97 |
+
options = ["Webcam", "Images"],
|
98 |
+
horizontal = True,
|
99 |
+
label_visibility = "collapsed",
|
100 |
+
args = (source, )
|
101 |
+
)
|
102 |
|
103 |
+
has_cam = True if (source == "Webcam") else False
|
104 |
|
105 |
+
stream = st.container()
|
106 |
+
with stream:
|
107 |
+
if has_cam:
|
108 |
+
webrtc_streamer(
|
109 |
+
key="example",
|
110 |
+
mode=WebRtcMode.SENDRECV,
|
111 |
+
video_frame_callback=video_frame_callback,
|
112 |
+
rtc_configuration={ "iceServers": get_ice_servers() },
|
113 |
+
media_stream_constraints={"video": True, "audio": False},
|
114 |
+
async_processing=True,
|
115 |
+
)
|
116 |
+
else:
|
117 |
+
pic = st.container()
|
118 |
+
frame = image_select(
|
119 |
+
label="Try the classifier on one of the provided examples!",
|
120 |
+
images=[
|
121 |
+
"ex0.jpg",
|
122 |
+
"ex1.jpg",
|
123 |
+
"ex2.jpg",
|
124 |
+
"ex3.jpg",
|
125 |
+
],
|
126 |
+
use_container_width= False
|
127 |
+
)
|
128 |
+
img = np.array(Image.open(frame))
|
129 |
+
pic.image(image_processing(img), width = 704)
|
130 |
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
+
recog = st.toggle(":green[Emotion recogntion]", key = "stream", value = True)
|
133 |
|