import streamlit as st from PIL import Image from ultralytics import YOLO # Set up Streamlit page st.set_page_config(page_title="Suspicious Activity Detection", layout="centered") # Load YOLOv11 model @st.cache_resource def load_model(): return YOLO("yolo11l .pt") # Ensure model filename matches model = load_model() # ------------------ Improved Action Classification Logic ------------------ def classify_action(detections): """ Classify activity based on object types, count, and confidence. """ action_scores = {'Stealing': 0, 'Sneaking': 0, 'Peaking': 0, 'Normal': 0} objects = [d[0] for d in detections] confidences = [d[1] for d in detections] has_person = 'person' in objects has_bag = any(obj in objects for obj in ['handbag', 'backpack']) few_objects = len(set(objects)) <= 2 mostly_person = objects.count('person') >= len(objects) * 0.6 if objects else False max_conf = max(confidences) if confidences else 0.0 # Decision tree for classification if has_person: if has_bag and len(objects) >= 3: action_scores['Stealing'] += 1.0 elif max_conf < 0.55 and few_objects: action_scores['Sneaking'] += 1.0 elif mostly_person and few_objects and max_conf >= 0.55: action_scores['Peaking'] += 1.0 else: action_scores['Normal'] += 1.0 else: action_scores['Normal'] += 1.0 # Normalize scores total = sum(action_scores.values()) if total > 0: for k in action_scores: action_scores[k] /= total return action_scores # ------------------ Detection Function ------------------ def detect_action(image_path): results = model.predict(source=image_path, conf=0.35, iou=0.5, save=False, verbose=False) result = results[0] detections = [ (model.names[int(cls)], float(conf)) for cls, conf in zip(result.boxes.cls, result.boxes.conf) ] annotated_image = result.plot() action_scores = classify_action(detections) return annotated_image, action_scores # ------------------ Streamlit UI ------------------ st.title("🛡️ Suspicious Activity Detection") st.markdown("Upload an image to detect if someone is **Stealing**, **Sneaking**, **Peaking**, or acting **Normal**.") uploaded_file = st.file_uploader("📤 Upload an image", type=["jpg", "jpeg", "png"]) if uploaded_file: image = Image.open(uploaded_file).convert("RGB") st.image(image, caption="Uploaded Image", use_column_width=True) temp_path = "/tmp/uploaded.jpg" image.save(temp_path) with st.spinner("🔍 Detecting suspicious activity..."): detected_image, action_scores = detect_action(temp_path) st.image(detected_image, caption="🔍 Detection Results", use_column_width=True) st.subheader("📊 Action Confidence Scores") for action, score in action_scores.items(): st.write(f"**{action}**: {score:.2%}") top_action = max(action_scores.items(), key=lambda x: x[1]) st.success(f"🎯 **Predicted Action:** {top_action[0]} ({top_action[1]:.2%} confidence)")