Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,89 @@
|
|
1 |
import streamlit as st
|
2 |
-
import torch
|
3 |
from PIL import Image
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
|
9 |
# Load YOLOv11 model
|
10 |
@st.cache_resource
|
11 |
def load_model():
|
12 |
-
return
|
13 |
|
14 |
model = load_model()
|
15 |
-
model.conf = 0.25 # confidence threshold
|
16 |
|
17 |
-
#
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from PIL import Image
|
3 |
+
from ultralytics import YOLO
|
4 |
+
|
5 |
+
# Set up Streamlit page
|
6 |
+
st.set_page_config(page_title="Suspicious Activity Detection", layout="centered")
|
7 |
|
8 |
# Load YOLOv11 model
|
9 |
@st.cache_resource
|
10 |
def load_model():
|
11 |
+
return YOLO("yolo11l (1).pt") # Ensure model filename matches
|
12 |
|
13 |
model = load_model()
|
|
|
14 |
|
15 |
+
# ------------------ Improved Action Classification Logic ------------------
|
16 |
+
def classify_action(detections):
|
17 |
+
"""
|
18 |
+
Classify activity based on object types, count, and confidence.
|
19 |
+
"""
|
20 |
+
action_scores = {'Stealing': 0, 'Sneaking': 0, 'Peaking': 0, 'Normal': 0}
|
21 |
+
objects = [d[0] for d in detections]
|
22 |
+
confidences = [d[1] for d in detections]
|
23 |
|
24 |
+
has_person = 'person' in objects
|
25 |
+
has_bag = any(obj in objects for obj in ['handbag', 'backpack'])
|
26 |
+
few_objects = len(set(objects)) <= 2
|
27 |
+
mostly_person = objects.count('person') >= len(objects) * 0.6 if objects else False
|
28 |
+
max_conf = max(confidences) if confidences else 0.0
|
29 |
+
|
30 |
+
# Decision tree for classification
|
31 |
+
if has_person:
|
32 |
+
if has_bag and len(objects) >= 3:
|
33 |
+
action_scores['Stealing'] += 1.0
|
34 |
+
elif max_conf < 0.55 and few_objects:
|
35 |
+
action_scores['Sneaking'] += 1.0
|
36 |
+
elif mostly_person and few_objects and max_conf >= 0.55:
|
37 |
+
action_scores['Peaking'] += 1.0
|
38 |
+
else:
|
39 |
+
action_scores['Normal'] += 1.0
|
40 |
+
else:
|
41 |
+
action_scores['Normal'] += 1.0
|
42 |
+
|
43 |
+
# Normalize scores
|
44 |
+
total = sum(action_scores.values())
|
45 |
+
if total > 0:
|
46 |
+
for k in action_scores:
|
47 |
+
action_scores[k] /= total
|
48 |
+
|
49 |
+
return action_scores
|
50 |
+
|
51 |
+
# ------------------ Detection Function ------------------
|
52 |
+
def detect_action(image_path):
|
53 |
+
results = model.predict(source=image_path, conf=0.35, iou=0.5, save=False, verbose=False)
|
54 |
+
result = results[0]
|
55 |
+
|
56 |
+
detections = [
|
57 |
+
(model.names[int(cls)], float(conf))
|
58 |
+
for cls, conf in zip(result.boxes.cls, result.boxes.conf)
|
59 |
+
]
|
60 |
+
|
61 |
+
annotated_image = result.plot()
|
62 |
+
action_scores = classify_action(detections)
|
63 |
+
|
64 |
+
return annotated_image, action_scores
|
65 |
+
|
66 |
+
# ------------------ Streamlit UI ------------------
|
67 |
+
st.title("🛡️ Suspicious Activity Detection")
|
68 |
+
st.markdown("Upload an image to detect if someone is **Stealing**, **Sneaking**, **Peaking**, or acting **Normal**.")
|
69 |
+
|
70 |
+
uploaded_file = st.file_uploader("📤 Upload an image", type=["jpg", "jpeg", "png"])
|
71 |
+
|
72 |
+
if uploaded_file:
|
73 |
+
image = Image.open(uploaded_file).convert("RGB")
|
74 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
75 |
+
|
76 |
+
temp_path = "/tmp/uploaded.jpg"
|
77 |
+
image.save(temp_path)
|
78 |
+
|
79 |
+
with st.spinner("🔍 Detecting suspicious activity..."):
|
80 |
+
detected_image, action_scores = detect_action(temp_path)
|
81 |
+
|
82 |
+
st.image(detected_image, caption="🔍 Detection Results", use_column_width=True)
|
83 |
+
|
84 |
+
st.subheader("📊 Action Confidence Scores")
|
85 |
+
for action, score in action_scores.items():
|
86 |
+
st.write(f"**{action}**: {score:.2%}")
|
87 |
+
|
88 |
+
top_action = max(action_scores.items(), key=lambda x: x[1])
|
89 |
+
st.success(f"🎯 **Predicted Action:** {top_action[0]} ({top_action[1]:.2%} confidence)")
|