File size: 12,392 Bytes
9719f08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "8ccfe024",
   "metadata": {},
   "source": [
    "# Stock Sentiment Analysis\n",
    "\n",
    "This notebook performs sentiment analysis on news articles related to specific stocks and correlates it with stock price movements."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "784f2635",
   "metadata": {},
   "source": [
    "## 1. Setup and Imports\n",
    "\n",
    "Import necessary libraries and modules from our `src` directory."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "3038c1d8",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Setup complete.\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import sys\n",
    "import os\n",
    "from datetime import datetime, timedelta\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "# Add src directory to path to import modules\n",
    "module_path = os.path.abspath(os.path.join('..'))\n",
    "if module_path not in sys.path:\n",
    "    sys.path.append(module_path)\n",
    "\n",
    "from src.data_fetcher import get_stock_data, get_news_articles\n",
    "\n",
    "# Configure pandas display options\n",
    "pd.set_option('display.max_rows', 100)\n",
    "pd.set_option('display.max_columns', 50)\n",
    "pd.set_option('display.width', 1000)\n",
    "\n",
    "print(\"Setup complete.\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4ed65790",
   "metadata": {},
   "source": [
    "## 2. Define Parameters\n",
    "\n",
    "Set the stock ticker and date range for analysis."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "d0bb6ca4",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Ticker: AAPL\n",
      "Start Date: 2025-03-31\n",
      "End Date: 2025-04-30\n"
     ]
    }
   ],
   "source": [
    "TICKER = 'AAPL'  # Example: Apple Inc.\n",
    "END_DATE = datetime.now().strftime('%Y-%m-%d')\n",
    "# Fetch data for the last 30 days (adjust as needed)\n",
    "# Note: NewsAPI free tier limits searches to the past month\n",
    "START_DATE = (datetime.now() - timedelta(days=30)).strftime('%Y-%m-%d') \n",
    "\n",
    "print(f\"Ticker: {TICKER}\")\n",
    "print(f\"Start Date: {START_DATE}\")\n",
    "print(f\"End Date: {END_DATE}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "902753f9",
   "metadata": {},
   "source": [
    "## 3. Fetch Data\n",
    "\n",
    "Use the functions from `data_fetcher.py` to get stock prices and news articles."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "0d28dcf3",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Fetching stock data...\n",
      "Successfully fetched 21 days of stock data.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Date</th>\n",
       "      <th>Open</th>\n",
       "      <th>High</th>\n",
       "      <th>Low</th>\n",
       "      <th>Close</th>\n",
       "      <th>Volume</th>\n",
       "      <th>Dividends</th>\n",
       "      <th>Stock Splits</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>2025-03-31</td>\n",
       "      <td>217.009995</td>\n",
       "      <td>225.619995</td>\n",
       "      <td>216.229996</td>\n",
       "      <td>222.130005</td>\n",
       "      <td>65299300</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2025-04-01</td>\n",
       "      <td>219.809998</td>\n",
       "      <td>223.679993</td>\n",
       "      <td>218.899994</td>\n",
       "      <td>223.190002</td>\n",
       "      <td>36412700</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2025-04-02</td>\n",
       "      <td>221.320007</td>\n",
       "      <td>225.190002</td>\n",
       "      <td>221.020004</td>\n",
       "      <td>223.889999</td>\n",
       "      <td>35905900</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2025-04-03</td>\n",
       "      <td>205.539993</td>\n",
       "      <td>207.490005</td>\n",
       "      <td>201.250000</td>\n",
       "      <td>203.190002</td>\n",
       "      <td>103419000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>2025-04-04</td>\n",
       "      <td>193.889999</td>\n",
       "      <td>199.880005</td>\n",
       "      <td>187.339996</td>\n",
       "      <td>188.380005</td>\n",
       "      <td>125910900</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "         Date        Open        High         Low       Close     Volume  Dividends  Stock Splits\n",
       "0  2025-03-31  217.009995  225.619995  216.229996  222.130005   65299300        0.0           0.0\n",
       "1  2025-04-01  219.809998  223.679993  218.899994  223.190002   36412700        0.0           0.0\n",
       "2  2025-04-02  221.320007  225.190002  221.020004  223.889999   35905900        0.0           0.0\n",
       "3  2025-04-03  205.539993  207.490005  201.250000  203.190002  103419000        0.0           0.0\n",
       "4  2025-04-04  193.889999  199.880005  187.339996  188.380005  125910900        0.0           0.0"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Fetch Stock Data\n",
    "print(\"Fetching stock data...\")\n",
    "stock_df = get_stock_data(TICKER, START_DATE, END_DATE)\n",
    "\n",
    "if stock_df is not None:\n",
    "    print(f\"Successfully fetched {len(stock_df)} days of stock data.\")\n",
    "    display(stock_df.head())\n",
    "else:\n",
    "    print(\"Failed to fetch stock data.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "45b2014d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Fetching news articles...\n",
      "Found 853 articles for 'AAPL'\n"
     ]
    },
    {
     "ename": "AttributeError",
     "evalue": "'list' object has no attribute 'empty'",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[20], line 4\u001b[0m\n\u001b[0;32m      2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFetching news articles...\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m      3\u001b[0m news_df \u001b[38;5;241m=\u001b[39m get_news_articles(TICKER, START_DATE, END_DATE)\n\u001b[1;32m----> 4\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m news_df \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[43mnews_df\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mempty\u001b[49m:\n\u001b[0;32m      5\u001b[0m     \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSuccessfully fetched \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlen\u001b[39m(news_df)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m news articles.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m      6\u001b[0m     display(news_df\u001b[38;5;241m.\u001b[39mhead())\n",
      "\u001b[1;31mAttributeError\u001b[0m: 'list' object has no attribute 'empty'"
     ]
    }
   ],
   "source": [
    "# Fetch News Articles\n",
    "print(\"Fetching news articles...\")\n",
    "articles_list = get_news_articles(TICKER, START_DATE, END_DATE)\n",
    "\n",
    "# Convert the list of articles to a DataFrame\n",
    "if articles_list is not None:\n",
    "    news_df = pd.DataFrame(articles_list)\n",
    "    # Convert publishedAt to datetime and extract date\n",
    "    if 'publishedAt' in news_df.columns:\n",
    "        news_df['publishedAt'] = pd.to_datetime(news_df['publishedAt'])\n",
    "        news_df['date'] = news_df['publishedAt'].dt.date\n",
    "    else:\n",
    "        news_df['date'] = None # Handle case where publishedAt might be missing\n",
    "else:\n",
    "    news_df = pd.DataFrame() # Create an empty DataFrame if fetching failed\n",
    "\n",
    "# Now check the DataFrame\n",
    "if not news_df.empty:\n",
    "    print(f\"Successfully fetched and converted {len(news_df)} news articles to DataFrame.\")\n",
    "    display(news_df[['date', 'title', 'description', 'source']].head()) # Display relevant columns\n",
    "else:\n",
    "    print(\"No news articles found or failed to create DataFrame.\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "060f293c",
   "metadata": {},
   "source": [
    "## 4. Sentiment Analysis\n",
    "\n",
    "Apply sentiment analysis to the fetched news articles."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "23508f73",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Skipping sentiment analysis as no news articles were successfully fetched or the DataFrame is empty.\n"
     ]
    }
   ],
   "source": [
    "from src.sentiment_analyzer import analyze_sentiment\n",
    "# Check if news_df exists and is not empty\n",
    "if 'news_df' in locals() and not news_df.empty:\n",
    "    print(f\"Performing sentiment analysis on {len(news_df)} articles...\")\n",
    "    # Combine title and description for better context (handle None values)\n",
    "    news_df['text_to_analyze'] = news_df['title'].fillna('') + \". \" + news_df['description'].fillna('')\n",
    "    # Apply the sentiment analysis function\n",
    "    # This might take a while depending on the number of articles and your hardware\n",
    "    sentiment_results = news_df['text_to_analyze'].apply(lambda x: analyze_sentiment(x) if pd.notna(x) else (None, None, None))\n",
    "    # Unpack results into separate columns\n",
    "    news_df['sentiment_label'] = sentiment_results.apply(lambda x: x[0])\n",
    "    news_df['sentiment_score'] = sentiment_results.apply(lambda x: x[1])\n",
    "    news_df['sentiment_scores_all'] = sentiment_results.apply(lambda x: x[2])\n",
    "    # Display the results\n",
    "    print(\"Sentiment analysis complete.\")\n",
    "    display(news_df[['date', 'title', 'sentiment_label', 'sentiment_score']].head())\n",
    "    # Display value counts for sentiment labels\n",
    "    print(\"\\nSentiment Label Distribution:\")\n",
    "    print(news_df['sentiment_label'].value_counts())\n",
    "else:\n",
    "    print(\"Skipping sentiment analysis as no news articles were successfully fetched or the DataFrame is empty.\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}