RyanTietjen commited on
Commit
ac0125e
·
verified ·
1 Parent(s): 0888047

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -120,7 +120,7 @@ def fragment_single_abstract(abstract):
120
  conclusion = []
121
 
122
  embed_layer = EmbeddingLayer()
123
- model = tf.keras.models.load_model("20k_5_epochs.keras", custom_objects={'EmbeddingLayer': embed_layer})
124
 
125
  data_by_character = split_sentences_by_characters(sentences)
126
  line_numbers = tf.one_hot(df["line_number"].to_numpy(), depth=15)
@@ -156,7 +156,7 @@ This app will take the abstract of a paper and break it down into five categorie
156
  The dataset used can be found in the [PubMed 200k RCT]("https://arxiv.org/pdf/1710.06071") and in [this repo](https://github.com/Franck-Dernoncourt/pubmed-rct). The model architecture
157
  was based off of ["Neural Networks for Joint Sentence Classification in Medical Paper Abstracts."](https://arxiv.org/pdf/1612.05251)
158
 
159
- This model achieved a testing accuracy of 88.12% and a F1 score of 87.92%. For the whole project, please visit [my GitHub](https://github.com/RyanTietjen/Paper-Fragmentation).
160
 
161
  How to use:
162
 
 
120
  conclusion = []
121
 
122
  embed_layer = EmbeddingLayer()
123
+ model = tf.keras.models.load_model("200k_10_epochs.keras", custom_objects={'EmbeddingLayer': embed_layer})
124
 
125
  data_by_character = split_sentences_by_characters(sentences)
126
  line_numbers = tf.one_hot(df["line_number"].to_numpy(), depth=15)
 
156
  The dataset used can be found in the [PubMed 200k RCT]("https://arxiv.org/pdf/1710.06071") and in [this repo](https://github.com/Franck-Dernoncourt/pubmed-rct). The model architecture
157
  was based off of ["Neural Networks for Joint Sentence Classification in Medical Paper Abstracts."](https://arxiv.org/pdf/1612.05251)
158
 
159
+ This model achieved a testing accuracy of 88.2% and a F1 score of 88%. For the whole project, please visit [my GitHub](https://github.com/RyanTietjen/Paper-Fragmentation).
160
 
161
  How to use:
162