Spaces:
Running
on
Zero
Running
on
Zero
Remove random noising
Browse files
app.py
CHANGED
@@ -20,11 +20,6 @@ pad_token = tokenizer.pad_token_id or tokenizer.eos_token_id
|
|
20 |
eot_token_id = tokenizer.eos_token_id
|
21 |
assistant_marker_ids = tokenizer.encode("Assistant:", add_special_tokens=False)
|
22 |
|
23 |
-
# --- Load token probabilities ---
|
24 |
-
with open("token_probabilities.json") as f:
|
25 |
-
token_probs_dict = json.load(f)
|
26 |
-
token_probabilities = np.array([token_probs_dict[str(i)] for i in range(len(token_probs_dict))], dtype=np.float32)
|
27 |
-
|
28 |
# def load_model():
|
29 |
# ckpt_path = hf_hub_download(
|
30 |
# repo_id="ruurd/tini_bi_m",
|
@@ -87,7 +82,7 @@ def get_noising_schedule(i, max_it, sharpness=5.0):
|
|
87 |
x = i / max_it
|
88 |
return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness))
|
89 |
|
90 |
-
def noisify_answer(input_ids, answer_start, threshold=1.0,
|
91 |
noised = input_ids.copy()
|
92 |
answer_len = len(noised) - answer_start
|
93 |
num_to_noise = int(threshold * answer_len * noise_start)
|
@@ -96,19 +91,6 @@ def noisify_answer(input_ids, answer_start, threshold=1.0, eot_weight=1.0, mask_
|
|
96 |
if num_to_noise == 0:
|
97 |
return noised, []
|
98 |
|
99 |
-
mixed_probs = token_probabilities.copy()
|
100 |
-
|
101 |
-
# Apply EOT weighting
|
102 |
-
mixed_probs[eot_token_id] *= eot_weight
|
103 |
-
|
104 |
-
# Scale all other probabilities so they sum to 1 - mask_weight
|
105 |
-
total_other = mixed_probs.sum() - mixed_probs[mask_token_id]
|
106 |
-
scale = (1.0 - mask_weight) / total_other
|
107 |
-
mixed_probs *= scale
|
108 |
-
|
109 |
-
# Set mask_token_id to mask_weight explicitly
|
110 |
-
mixed_probs[mask_token_id] = mask_weight
|
111 |
-
|
112 |
num_clusters = max(1, int((1 - clustering) * num_to_noise))
|
113 |
cluster_size = max(1, int(num_to_noise / num_clusters))
|
114 |
|
@@ -121,15 +103,14 @@ def noisify_answer(input_ids, answer_start, threshold=1.0, eot_weight=1.0, mask_
|
|
121 |
|
122 |
noised_indices = sorted(list(noised_indices))[:num_to_noise]
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
noised[idx] = val
|
127 |
|
128 |
return noised, noised_indices
|
129 |
|
130 |
|
131 |
# Add new noising function
|
132 |
-
def confidence_guided_noising(input_ids, answer_start, confidences, noise_clipping, threshold=1.0,
|
133 |
noised = input_ids.copy()
|
134 |
answer_len = len(input_ids) - answer_start
|
135 |
num_to_noise = int(threshold * answer_len * noise_start)
|
@@ -158,22 +139,8 @@ def confidence_guided_noising(input_ids, answer_start, confidences, noise_clippi
|
|
158 |
p=weights
|
159 |
)
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
# Apply EOT weighting
|
164 |
-
mixed_probs[eot_token_id] *= eot_weight
|
165 |
-
|
166 |
-
# Scale all other probabilities so they sum to 1 - mask_weight
|
167 |
-
total_other = mixed_probs.sum() - mixed_probs[mask_token_id]
|
168 |
-
scale = (1.0 - mask_weight) / total_other
|
169 |
-
mixed_probs *= scale
|
170 |
-
|
171 |
-
# Set mask_token_id to mask_weight explicitly
|
172 |
-
mixed_probs[mask_token_id] = mask_weight
|
173 |
-
|
174 |
-
noise = rng.choice(np.arange(vocab_size), size=num_to_noise, p=mixed_probs)
|
175 |
-
for idx, val in zip(indices, noise):
|
176 |
-
noised[idx] = val
|
177 |
|
178 |
return noised
|
179 |
|
@@ -194,7 +161,7 @@ def generate_diffusion_text(input_ids):
|
|
194 |
return sampled, conf
|
195 |
|
196 |
# --- Inference Wrapper ---
|
197 |
-
def diffusion_chat(question,
|
198 |
placeholder = "What do you know about the city of New York?"
|
199 |
placeholder = ""
|
200 |
if question.strip() == "":
|
@@ -215,7 +182,7 @@ def diffusion_chat(question, eot_weight, mask_weight, max_it, pause_length, shar
|
|
215 |
|
216 |
ori_input_tokens = input_ids
|
217 |
current_tokens, just_noised_indices = noisify_answer(
|
218 |
-
input_ids, answer_start, threshold=1.0,
|
219 |
)
|
220 |
yield f"<b>Iteration 0 (initial noise):</b><br>" + tokenizer.decode(current_tokens[answer_start:], skip_special_tokens=True).replace('\n', '<br>')
|
221 |
time.sleep(pause_length)
|
@@ -262,12 +229,12 @@ def diffusion_chat(question, eot_weight, mask_weight, max_it, pause_length, shar
|
|
262 |
threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
|
263 |
if use_confidence_noising:
|
264 |
noised_answer = confidence_guided_noising(
|
265 |
-
current_tokens, answer_start, confidences, noise_clipping, threshold=threshold,
|
266 |
)
|
267 |
just_noised_indices = []
|
268 |
else:
|
269 |
noised_answer, just_noised_indices = noisify_answer(
|
270 |
-
current_tokens, answer_start, threshold=threshold,
|
271 |
)
|
272 |
|
273 |
# Compose full input again: prompt + noised answer
|
@@ -306,8 +273,6 @@ demo = gr.Interface(
|
|
306 |
fn=diffusion_chat,
|
307 |
inputs=[
|
308 |
gr.Textbox(label="User Question", lines=2, placeholder="What do you know about the city of New York?"),
|
309 |
-
gr.Slider(0, 1, value=0.5, step=0.05, label="↓ = longer answers (EOT weight)"),
|
310 |
-
gr.Slider(0, 1, value=0.5, step=0.05, label="↓ = more random answers (MASK weight)"),
|
311 |
gr.Slider(1, 512, value=32, step=1, label="↑ = more iterations"),
|
312 |
gr.Slider(0.01, 5, value=0.01, step=0.01, label="↑ = longer pause (for visualization)"),
|
313 |
gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="↓ = more noising (sharpness)"),
|
|
|
20 |
eot_token_id = tokenizer.eos_token_id
|
21 |
assistant_marker_ids = tokenizer.encode("Assistant:", add_special_tokens=False)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
23 |
# def load_model():
|
24 |
# ckpt_path = hf_hub_download(
|
25 |
# repo_id="ruurd/tini_bi_m",
|
|
|
82 |
x = i / max_it
|
83 |
return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness))
|
84 |
|
85 |
+
def noisify_answer(input_ids, answer_start, threshold=1.0, clustering=0.5, noise_start = 1.0):
|
86 |
noised = input_ids.copy()
|
87 |
answer_len = len(noised) - answer_start
|
88 |
num_to_noise = int(threshold * answer_len * noise_start)
|
|
|
91 |
if num_to_noise == 0:
|
92 |
return noised, []
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
num_clusters = max(1, int((1 - clustering) * num_to_noise))
|
95 |
cluster_size = max(1, int(num_to_noise / num_clusters))
|
96 |
|
|
|
103 |
|
104 |
noised_indices = sorted(list(noised_indices))[:num_to_noise]
|
105 |
|
106 |
+
for idx in noised_indices:
|
107 |
+
noised[idx] = mask_token_id
|
|
|
108 |
|
109 |
return noised, noised_indices
|
110 |
|
111 |
|
112 |
# Add new noising function
|
113 |
+
def confidence_guided_noising(input_ids, answer_start, confidences, noise_clipping, threshold=1.0, noise_start = 1.0):
|
114 |
noised = input_ids.copy()
|
115 |
answer_len = len(input_ids) - answer_start
|
116 |
num_to_noise = int(threshold * answer_len * noise_start)
|
|
|
139 |
p=weights
|
140 |
)
|
141 |
|
142 |
+
for idx in indices:
|
143 |
+
noised[idx] = mask_token_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
return noised
|
146 |
|
|
|
161 |
return sampled, conf
|
162 |
|
163 |
# --- Inference Wrapper ---
|
164 |
+
def diffusion_chat(question, max_it, pause_length, sharpness, clustering, noise_start, use_confidence_noising, noise_clipping):
|
165 |
placeholder = "What do you know about the city of New York?"
|
166 |
placeholder = ""
|
167 |
if question.strip() == "":
|
|
|
182 |
|
183 |
ori_input_tokens = input_ids
|
184 |
current_tokens, just_noised_indices = noisify_answer(
|
185 |
+
input_ids, answer_start, threshold=1.0, clustering=clustering, noise_start = 1.0,
|
186 |
)
|
187 |
yield f"<b>Iteration 0 (initial noise):</b><br>" + tokenizer.decode(current_tokens[answer_start:], skip_special_tokens=True).replace('\n', '<br>')
|
188 |
time.sleep(pause_length)
|
|
|
229 |
threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
|
230 |
if use_confidence_noising:
|
231 |
noised_answer = confidence_guided_noising(
|
232 |
+
current_tokens, answer_start, confidences, noise_clipping, threshold=threshold, noise_start=noise_start
|
233 |
)
|
234 |
just_noised_indices = []
|
235 |
else:
|
236 |
noised_answer, just_noised_indices = noisify_answer(
|
237 |
+
current_tokens, answer_start, threshold=threshold, clustering=clustering, noise_start = noise_start,
|
238 |
)
|
239 |
|
240 |
# Compose full input again: prompt + noised answer
|
|
|
273 |
fn=diffusion_chat,
|
274 |
inputs=[
|
275 |
gr.Textbox(label="User Question", lines=2, placeholder="What do you know about the city of New York?"),
|
|
|
|
|
276 |
gr.Slider(1, 512, value=32, step=1, label="↑ = more iterations"),
|
277 |
gr.Slider(0.01, 5, value=0.01, step=0.01, label="↑ = longer pause (for visualization)"),
|
278 |
gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="↓ = more noising (sharpness)"),
|