Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.amp import autocast | |
from transformers import PreTrainedModel | |
from model_config import CustomTransformerConfig | |
class CustomTransformerModel(PreTrainedModel): | |
config_class = CustomTransformerConfig | |
def __init__(self, config): | |
super().__init__(config) | |
def forward(self, input_ids, labels=None, **kwargs): | |
batch_size, seq_len = input_ids.shape | |
device = input_ids.device | |
masking_type = getattr(self.config, "masking_type", "bidirectional") | |
if masking_type == 'bidirectional': | |
base_mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device) | |
elif masking_type == 'bidirectional_masked': | |
base_mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device) | |
base_mask.fill_diagonal_(False) | |
elif masking_type == 'unidirectional': | |
base_mask = torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device)) | |
else: | |
raise ValueError(f"Unknown masking type: {masking_type}") | |
attention_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() | |
attention_mask = attention_mask.to(dtype=torch.float32) | |
with autocast("mps", dtype=torch.float16): | |
outputs = self.llama( | |
input_ids, | |
attention_mask=attention_mask, | |
output_hidden_states=True, | |
use_cache=False, | |
**kwargs | |
) | |
logits = outputs.logits[:, :, :self.config.vocab_size].view(batch_size, seq_len, self.config.vocab_size) | |
loss = None | |
if labels is not None: | |
assert labels.shape == (batch_size, seq_len) | |
loss_fct = nn.CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) | |
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits} | |