Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
import time | |
import random | |
import importlib | |
import torch.nn as nn | |
import os | |
from IPython.display import display, HTML, Markdown, clear_output | |
from transformers import AutoTokenizer | |
rng = np.random.default_rng() | |
def disable_dropout(model): | |
for name, module in model.named_modules(): | |
if isinstance(module, nn.Dropout): | |
setattr(model, name, nn.Identity()) # Replace Dropout with Identity | |
return model | |
def load_trained_model(checkpoint_path: str, base_model_name: str = "meta-llama/Llama-3.2-3B"): | |
# Load tokenizer + config from saved dir | |
hf_token = os.getenv("HF_TOKEN") | |
tokenizer = AutoTokenizer.from_pretrained(base_model_name, | |
use_fast=True, | |
token=hf_token, | |
torch_dtype=torch.float32) | |
# Step 5: Load the model safely | |
model = torch.load(checkpoint_path, map_location=torch.device('cpu'), weights_only=False) | |
# Disable dropout | |
model = disable_dropout(model) | |
print("✅ Model successfully loaded from checkpoint:", checkpoint_path) | |
# Move to correct device | |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
# model = model.to(torch.float32) | |
model.to(device) | |
model.eval() | |
return model, tokenizer | |
def filter_logits(logits, top_k=0, top_p=1.0, temperature=1.0): | |
""" | |
Vectorized top-k and/or top-p (nucleus) filtering with temperature scaling. | |
Accepts logits of shape (seq_len, vocab_size) or (1, seq_len, vocab_size), | |
and returns logits in the same shape. | |
""" | |
original_shape = logits.shape | |
if logits.dim() == 3: | |
logits = logits.squeeze(0) # shape: (seq_len, vocab_size) | |
logits = logits.clone() | |
# --- Temperature scaling --- | |
if temperature != 1.0: | |
logits = logits / temperature | |
# --- Top-k filtering --- | |
if top_k > 0 and top_k < logits.size(-1): | |
topk_vals, _ = torch.topk(logits, top_k, dim=-1) | |
thresholds = topk_vals[:, -1].unsqueeze(-1) | |
logits = torch.where(logits < thresholds, torch.full_like(logits, float("-inf")), logits) | |
# --- Top-p filtering --- | |
if top_p > 0.0 and top_p < 1.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) | |
probs = torch.softmax(sorted_logits, dim=-1) | |
cum_probs = probs.cumsum(dim=-1) | |
mask = cum_probs > top_p | |
mask[:, 0] = False # always keep top token | |
scatter_mask = torch.zeros_like(logits, dtype=torch.bool).scatter(dim=-1, index=sorted_indices, src=mask) | |
logits = torch.where(scatter_mask, torch.full_like(logits, float("-inf")), logits) | |
# Restore original shape | |
if original_shape[0] == 1: | |
logits = logits.unsqueeze(0) | |
return logits | |
# --- Utility Functions --- | |
def decode_tokens_safe(token_ids, tokenizer): | |
return tokenizer.decode(token_ids, skip_special_tokens=True).replace("\n", " ") | |
def find_answer_start(input_ids, marker_ids): | |
for i in range(len(input_ids) - len(marker_ids) + 1): | |
if input_ids[i:i + len(marker_ids)] == marker_ids: | |
return i + len(marker_ids) | |
return None | |
def get_noising_schedule(i, max_it, sharpness=5.0): | |
x = i / max_it | |
return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness)) | |
def noisify_answer(input_ids, answer_start, tokenizer, threshold=1.0, clustering=0.5, noise_start = 1.0): | |
noised = input_ids.copy() | |
answer_len = len(noised) - answer_start | |
num_to_noise = int(threshold * answer_len * noise_start) | |
mask_token_id = tokenizer.encode('MASK', add_special_tokens = False)[0] | |
if num_to_noise == 0: | |
return noised, [] | |
num_clusters = max(1, int((1 - clustering) * num_to_noise)) | |
cluster_size = max(1, int(num_to_noise / num_clusters)) | |
noised_indices = set() | |
for _ in range(num_clusters): | |
center = rng.integers(answer_start, len(noised)) | |
span_start = max(answer_start, center - cluster_size // 2) | |
span_end = min(len(noised), span_start + cluster_size) | |
noised_indices.update(range(span_start, span_end)) | |
noised_indices = sorted(list(noised_indices))[:num_to_noise] | |
for idx in noised_indices: | |
noised[idx] = mask_token_id | |
return noised, noised_indices | |
import torch.nn.functional as F | |
def noisify_answer_without_remasking(input_ids, answer_start, tokenizer, threshold=1.0, noise_start=1.0, unmasked_mask=None): | |
noised = input_ids.copy() | |
mask_token_id = tokenizer.encode('MASK', add_special_tokens=False)[0] | |
eligible_indices = list(range(answer_start, len(noised))) | |
if unmasked_mask is not None: | |
eligible_indices = [i for i in eligible_indices if not unmasked_mask[i]] | |
answer_len = len(noised) - answer_start | |
num_to_noise = int(threshold * answer_len * noise_start) | |
if num_to_noise == 0 or len(eligible_indices) == 0: | |
return noised, [] | |
selected = rng.choice(eligible_indices, size=num_to_noise, replace=False).tolist() | |
for idx in selected: | |
noised[idx] = mask_token_id | |
return noised, selected | |
def confidence_guided_noising(input_ids, answer_start, tokenizer, confidences, noise_clipping, threshold=1.0, noise_start=1.0): | |
noised = input_ids.copy() | |
answer_len = len(input_ids) - answer_start | |
num_to_noise = int(threshold * answer_len * noise_start) | |
mask_token_id = tokenizer.encode('MASK', add_special_tokens=False)[0] | |
eos_token_id = tokenizer.eos_token_id | |
if num_to_noise == 0: | |
return noised, [] | |
all_indices = np.arange(answer_start, len(input_ids)) | |
eos_indices = [i for i in all_indices if input_ids[i] == eos_token_id] | |
non_eos_indices = [i for i in all_indices if input_ids[i] != eos_token_id] | |
# Proportionally split how many to noise | |
num_non_eos_to_noise = int(num_to_noise * len(non_eos_indices) / (len(non_eos_indices) + len(eos_indices) + 1e-5)) | |
num_eos_to_noise = num_to_noise - num_non_eos_to_noise | |
noised_indices = [] | |
# --- Non-EOS --- | |
if non_eos_indices: | |
raw_weights = 1.0 - np.array([confidences[i - answer_start] for i in non_eos_indices]) | |
raw_weights = np.clip(raw_weights, a_min=noise_clipping, a_max=None) | |
weights = raw_weights / raw_weights.sum() | |
chosen = rng.choice(non_eos_indices, size=min(num_non_eos_to_noise, len(non_eos_indices)), replace=False, p=weights) | |
noised_indices.extend(chosen.tolist()) | |
# --- EOS --- | |
if eos_indices and num_eos_to_noise > 0: | |
raw_weights = 1.0 - np.array([confidences[i - answer_start] for i in eos_indices]) | |
raw_weights = np.clip(raw_weights, a_min=noise_clipping, a_max=None) | |
weights = raw_weights / raw_weights.sum() | |
chosen = rng.choice(eos_indices, size=min(num_eos_to_noise, len(eos_indices)), replace=False, p=weights) | |
noised_indices.extend(chosen.tolist()) | |
for idx in noised_indices: | |
noised[idx] = mask_token_id | |
noised_indices = sorted(noised_indices) | |
return noised, noised_indices | |
def generate_diffusion_text(model, input_ids, answer_start, top_k=0, top_p=1.0, temperature=1.0, | |
eos_token_id=None, eos_boost=0.0): | |
model.eval() | |
with torch.no_grad(), torch.autocast(device_type='cuda', dtype=torch.bfloat16): | |
input_tensor = torch.tensor([input_ids], dtype=torch.long).to(model.device) | |
logits = model(input_ids=input_tensor)["logits"] # (1, seq_len, vocab_size) | |
# Optionally boost or suppress EOS token | |
if eos_token_id is not None and eos_boost != 0.0: | |
logits[:, :, eos_token_id] += eos_boost | |
# Filter and sample | |
filtered_logits = filter_logits(logits, top_k=top_k, top_p=top_p, temperature=temperature) | |
probs = F.softmax(filtered_logits, dim=-1).squeeze() # (seq_len, vocab_size) | |
probs = torch.clamp(probs, min=1e-8, max=1.0) | |
sampled = torch.multinomial(probs, num_samples=1).squeeze(-1) | |
confidences = probs.gather(1, sampled.unsqueeze(-1)).squeeze(-1) | |
return input_ids[:answer_start] + sampled[answer_start:].tolist(), confidences | |
def calculate_answer_perplexity(prompt, answer, model_name='gpt2-large'): | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name).eval() | |
device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu") | |
model.to(device) | |
full_input = prompt + answer | |
enc = tokenizer(full_input, return_tensors="pt") | |
input_ids = enc.input_ids.to(device) | |
with torch.no_grad(): | |
labels = input_ids.clone() | |
prompt_len = len(tokenizer(prompt, add_special_tokens=False)["input_ids"]) | |
labels[0, :prompt_len] = -100 | |
loss = model(input_ids, labels=labels).loss | |
return torch.exp(loss).item() | |
def format_token_colored_inline(token_id, conf, tokenizer, mask_token_id=128000): | |
token_str = tokenizer.decode([token_id]).replace("\n", "<br>") | |
# token_str = token_str.replace(" ", " ") # Preserve spaces for inline display | |
# token_str = token_str.replace("\t", " ") # Replace tabs with spaces | |
if token_id == mask_token_id: | |
color = "black" | |
else: | |
color = f"hsl({int(conf * 120)}, 100%, 25%)" | |
return f"<span style='color:{color}' title='Conf: {conf:.2f}'>{token_str}</span>" | |
def display_diffusion_output(i, max_it, question, ori_input_tokens, generated_tokens, confidences, answer_start, tokenizer): | |
clear_output(wait=True) | |
display(Markdown(f"### Iteration {i}/{max_it-1}")) | |
display(Markdown(f"**Question:** {tokenizer.decode(ori_input_tokens[:answer_start])}")) | |
mask_token_id = tokenizer.encode('MASK', add_special_tokens=False)[0] | |
output_html = ''.join([ | |
format_token_colored_inline(tok, conf, tokenizer, mask_token_id) | |
for tok, conf in zip(generated_tokens[answer_start:], confidences[answer_start:]) | |
if tok != 128001 # skip EOT | |
]) | |
output_html = f"<div style='white-space: pre-wrap'>{output_html}</div>" | |
html = HTML(f"<b>Diffusion Output with Confidence:</b><br><div style='line-height:1.8; white-space: pre-wrap'>{output_html}</div>") | |
display(html) | |
return output_html | |
def save_html_colored_output(filename, html_content): | |
with open(filename, "w", encoding="utf-8") as f: | |
f.write(f""" | |
<html> | |
<head> | |
<meta charset="utf-8"> | |
<style> | |
body {{ font-family: sans-serif; line-height: 1.6; }} | |
span {{ padding: 0 2px; }} | |
</style> | |
</head> | |
<body> | |
{html_content} | |
</body> | |
</html> | |
""") | |
def generate_answer(question: str, model, tokenizer, max_it=16, noise_start=0.5, | |
noising_sharpness=5.0, max_length=256, top_k=100, top_p=1.0, | |
temperature=1.0, eos_token_id = None, eos_boost = 0.0) -> str: | |
if eos_token_id is None: | |
eos_token_id = tokenizer.eos_token_id | |
# Format prompt with LLaMA 3 chat template | |
prompt = ( | |
"<|begin_of_text|>\n" | |
"<|start_header_id|>system<|end_header_id|>\n" | |
"You are a helpful assistant.\n" | |
"<|eot_id|>\n" | |
"<|start_header_id|>user<|end_header_id|>\n" | |
f"{question.strip()}\n" | |
"<|start_header_id|>assistant<|end_header_id|>\n" | |
) | |
input_ids = tokenizer.encode(prompt, add_special_tokens=False) | |
marker = tokenizer.encode("<|start_header_id|>assistant<|end_header_id|>\n", add_special_tokens=False) | |
def find_answer_start(ids, marker): | |
for i in range(len(ids) - len(marker) + 1): | |
if ids[i:i+len(marker)] == marker: | |
return i + len(marker) | |
return None | |
answer_start = find_answer_start(input_ids, marker) | |
if answer_start is None: | |
raise ValueError("Assistant marker not found in prompt.") | |
# Pad to max length | |
pad_token = tokenizer.eos_token_id | |
mask_token = tokenizer.encode("MASK", add_special_tokens=False)[0] | |
input_ids = input_ids[:max_length] | |
if len(input_ids) < max_length: | |
input_ids += [mask_token] * (max_length - len(input_ids)) | |
ori_tokens = input_ids | |
current_tokens = noisify_answer(ori_tokens, answer_start, threshold=1.0, mask_token_id=mask_token) | |
last_tokens = [] | |
for step in range(max_it): | |
# Generate a new prediction | |
current_tokens, confidence_scores = generate_diffusion_text( | |
model, current_tokens, answer_start, | |
top_k=top_k, top_p=top_p, temperature=temperature, | |
eos_token_id=eos_token_id, eos_boost=eos_boost | |
) | |
# Display for debugging / tracking | |
display_diffusion_output( | |
step, max_it, question, | |
ori_tokens, current_tokens, confidence_scores, | |
answer_start, tokenizer | |
) | |
# Early stopping | |
last_tokens.append(current_tokens) | |
if len(last_tokens) > 4: | |
last_tokens.pop(0) | |
if all(t == last_tokens[0] for t in last_tokens): | |
break | |
# Re-apply noise for next iteration | |
if step < max_it - 1: | |
threshold = noise_start * get_noising_schedule(step, max_it, sharpness=noising_sharpness) | |
current_tokens = noisify_answer(current_tokens, answer_start, threshold=threshold, mask_token_id=mask_token) | |
return tokenizer.decode(current_tokens[answer_start:], skip_special_tokens=True).strip() | |