import os import torch import time import torch import time import gradio as gr import spaces from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer import threading import queue class RichTextStreamer(TextIteratorStreamer): def __init__(self, tokenizer, prompt_len=0, **kwargs): super().__init__(tokenizer, **kwargs) self.token_queue = queue.Queue() self.prompt_len = prompt_len self.count = 0 def put(self, value): if isinstance(value, torch.Tensor): token_ids = value.view(-1).tolist() elif isinstance(value, list): token_ids = value else: token_ids = [value] for token_id in token_ids: self.count += 1 if self.count <= self.prompt_len: continue # skip prompt tokens token_str = self.tokenizer.decode([token_id], **self.decode_kwargs) is_special = token_id in self.tokenizer.all_special_ids self.token_queue.put({ "token_id": token_id, "token": token_str, "is_special": is_special }) def __iter__(self): while True: try: token_info = self.token_queue.get(timeout=self.timeout) yield token_info except queue.Empty: if self.end_of_generation.is_set(): break from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer import threading from transformers import TextIteratorStreamer import threading from transformers import TextIteratorStreamer import queue class RichTextStreamer(TextIteratorStreamer): def __init__(self, tokenizer, prompt_len=0, **kwargs): super().__init__(tokenizer, **kwargs) self.token_queue = queue.Queue() self.prompt_len = prompt_len self.count = 0 def put(self, value): if isinstance(value, torch.Tensor): token_ids = value.view(-1).tolist() elif isinstance(value, list): token_ids = value else: token_ids = [value] for token_id in token_ids: self.count += 1 if self.count <= self.prompt_len: continue # skip prompt tokens token_str = self.tokenizer.decode([token_id], **self.decode_kwargs) is_special = token_id in self.tokenizer.all_special_ids self.token_queue.put({ "token_id": token_id, "token": token_str, "is_special": is_special }) def __iter__(self): while True: try: token_info = self.token_queue.get(timeout=self.timeout) yield token_info except queue.Empty: if self.end_of_generation.is_set(): break @spaces.GPU def chat_with_model(messages): global current_model, current_tokenizer if current_model is None or current_tokenizer is None: yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}] return pad_id = current_tokenizer.pad_token_id eos_id = current_tokenizer.eos_token_id if pad_id is None: pad_id = current_tokenizer.unk_token_id or 0 output_text = "" in_think = False max_new_tokens = 1024 generated_tokens = 0 prompt = format_prompt(messages) device = torch.device("cuda") current_model.to(device).half() # 1. Tokenize prompt inputs = current_tokenizer(prompt, return_tensors="pt").to(device) prompt_len = inputs["input_ids"].shape[-1] # 2. Init streamer with prompt_len streamer = RichTextStreamer( tokenizer=current_tokenizer, prompt_len=prompt_len, skip_special_tokens=False ) # 3. Build generation kwargs generation_kwargs = dict( **inputs, max_new_tokens=max_new_tokens, do_sample=True, streamer=streamer, eos_token_id=eos_id, pad_token_id=pad_id ) # 4. Launch generation in a thread thread = threading.Thread(target=current_model.generate, kwargs=generation_kwargs) thread.start() messages = messages.copy() messages.append({"role": "assistant", "content": ""}) print(f'Step 1: {messages}') prompt_text = current_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=False) for token_info in streamer: token_str = token_info["token"] token_id = token_info["token_id"] is_special = token_info["is_special"] # Stop immediately at EOS if token_id == eos_id: break # Detect reasoning block if "" in token_str: in_think = True token_str = token_str.replace("", "") output_text += "*" if "" in token_str: in_think = False token_str = token_str.replace("", "") output_text += token_str + "*" else: output_text += token_str # Early stopping if user reappears if "\nUser" in output_text: output_text = output_text.split("\nUser")[0].rstrip() messages[-1]["content"] = output_text break generated_tokens += 1 if generated_tokens >= max_new_tokens: break messages[-1]["content"] = output_text print(f'Step 2: {messages}') yield messages if in_think: output_text += "*" messages[-1]["content"] = output_text # Wait for thread to finish # current_model.to("cpu") torch.cuda.empty_cache() messages[-1]["content"] = output_text print(f'Step 3: {messages}') return messages # Globals current_model = None current_tokenizer = None def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)): global current_model, current_tokenizer token = os.getenv("HF_TOKEN") progress(0, desc="Loading tokenizer...") current_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token) progress(0.5, desc="Loading model...") current_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="cpu", # loaded to CPU initially use_auth_token=token ) progress(1, desc="Model ready.") return f"{model_name} loaded and ready!" # Format conversation as plain text def format_prompt(messages): prompt = "" for msg in messages: role = msg["role"] if role == "user": prompt += f"User: {msg['content'].strip()}\n" elif role == "assistant": prompt += f"Assistant: {msg['content'].strip()}\n" prompt += "Assistant:" return prompt def add_user_message(user_input, history): return "", history + [{"role": "user", "content": user_input}] # Curated models model_choices = [ "meta-llama/Llama-3.2-3B-Instruct", "deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "google/gemma-7b", "mistralai/Mistral-Small-3.1-24B-Instruct-2503" ] # Example patient database patient_db = { "001 - John Doe": { "name": "John Doe", "age": "45", "id": "001", "notes": "History of chest pain and hypertension. No prior surgeries." }, "002 - Maria Sanchez": { "name": "Maria Sanchez", "age": "62", "id": "002", "notes": "Suspected pulmonary embolism. Shortness of breath, tachycardia." }, "003 - Ahmed Al-Farsi": { "name": "Ahmed Al-Farsi", "age": "29", "id": "003", "notes": "Persistent migraines. MRI scheduled for brain imaging." }, "004 - Lin Wei": { "name": "Lin Wei", "age": "51", "id": "004", "notes": "Annual screening. Family history of breast cancer." } } def autofill_patient(patient_key): if patient_key in patient_db: info = patient_db[patient_key] return info["name"], info["age"], info["id"], info["notes"] return "", "", "", "" with gr.Blocks(css=".gradio-container {height: 100vh; overflow: hidden;}") as demo: gr.Markdown("## Radiologist's Companion") default_model = gr.State(model_choices[0]) with gr.Row(equal_height=True): # <-- make columns same height with gr.Column(scale=1): gr.Markdown("### Patient Information") patient_selector = gr.Dropdown( choices=list(patient_db.keys()), label="Select Patient", allow_custom_value=False ) patient_name = gr.Textbox(label="Name", placeholder="e.g., John Doe") patient_age = gr.Textbox(label="Age", placeholder="e.g., 45") patient_id = gr.Textbox(label="Patient ID", placeholder="e.g., 123456") patient_notes = gr.Textbox(label="Clinical Notes", lines=10, placeholder="e.g., History of chest pain...") with gr.Column(scale=2): gr.Markdown("### Chat") chatbot = gr.Chatbot(label="Chat", type="messages", height=500) # <-- fixed height msg = gr.Textbox(label="Your message", placeholder="Enter your chat message...", show_label=False) with gr.Row(): submit_btn = gr.Button("Submit", variant="primary") clear_btn = gr.Button("Clear", variant="secondary") with gr.Column(scale=1): gr.Markdown("### Model Settings") mode = gr.Radio(["Choose from list", "Enter custom model"], value="Choose from list", label="Model Input Mode") model_selector = gr.Dropdown(choices=model_choices, label="Select Predefined Model") model_textbox = gr.Textbox(label="Or Enter HF Model Name") model_status = gr.Textbox(label="Model Status", interactive=False) # Functions for resolving model choice def resolve_model_choice(mode, dropdown_value, textbox_value): return textbox_value.strip() if mode == "Enter custom model" else dropdown_value # Link patient selector patient_selector.change( autofill_patient, inputs=[patient_selector], outputs=[patient_name, patient_age, patient_id, patient_notes] ) # Load on launch demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status) # Model selection logic mode.select(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then( load_model_on_selection, inputs=default_model, outputs=model_status ) model_selector.change(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then( load_model_on_selection, inputs=default_model, outputs=model_status ) model_textbox.submit(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then( load_model_on_selection, inputs=default_model, outputs=model_status ) # Submit via enter key or button msg.submit(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then( chat_with_model, chatbot, chatbot ) submit_btn.click(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then( chat_with_model, chatbot, chatbot ) clear_btn.click(lambda: [], None, chatbot, queue=False) demo.launch()