import os import torch import gradio as gr import spaces from transformers import AutoTokenizer, AutoModelForCausalLM # Use a global variable to hold the current model and tokenizer current_model = None current_tokenizer = None def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)): global current_model, current_tokenizer token = os.getenv("HF_TOKEN") progress(0, desc="Loading tokenizer...") current_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token) progress(0.5, desc="Loading model...") current_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="cuda", use_auth_token=token ) progress(1, desc="Model ready.") return f"{model_name} loaded and ready!" @spaces.GPU def generate_text(prompt): global current_model, current_tokenizer if current_model is None or current_tokenizer is None: return "⚠️ No model loaded yet. Please select a model first." inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device) outputs = current_model.generate(**inputs, max_new_tokens=256) return current_tokenizer.decode(outputs[0], skip_special_tokens=True) # Model options model_choices = [ "deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "meta-llama/Llama-3.2-3B-Instruct", "google/gemma-7b" ] # Gradio UI with gr.Blocks() as demo: gr.Markdown("## Clinical Text Testing with LLaMA, DeepSeek, and Gemma") model_selector = gr.Dropdown(choices=model_choices, label="Select Model") model_status = gr.Textbox(label="Model Status", interactive=False) input_text = gr.Textbox(label="Input Clinical Text") output_text = gr.Textbox(label="Generated Output") generate_btn = gr.Button("Generate") # Load model on dropdown change model_selector.change(fn=load_model_on_selection, inputs=model_selector, outputs=model_status) # Generate with current model generate_btn.click(fn=generate_text, inputs=input_text, outputs=output_text) demo.launch()