import os import torch import time import gradio as gr import spaces from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer import threading from transformers import TextIteratorStreamer import threading @spaces.GPU def chat_with_model(messages): global current_model, current_tokenizer if current_model is None or current_tokenizer is None: yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}] return current_model.to("cuda").half() pad_id = current_tokenizer.pad_token_id if pad_id is None: pad_id = current_tokenizer.unk_token_id or 0 prompt = format_prompt(messages) inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device) streamer = TextIteratorStreamer(current_tokenizer, skip_prompt=True, skip_special_tokens=False) generation_kwargs = dict( **inputs, max_new_tokens=256, do_sample=True, streamer=streamer, eos_token_id=current_tokenizer.eos_token_id, pad_token_id=pad_id ) thread = threading.Thread(target=current_model.generate, kwargs=generation_kwargs) thread.start() output_text = "" messages = messages.copy() messages.append({"role": "assistant", "content": ""}) for new_text in streamer: output_text += new_text messages[-1]["content"] = output_text yield messages current_model.to("cpu") torch.cuda.empty_cache() # Globals current_model = None current_tokenizer = None def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)): global current_model, current_tokenizer token = os.getenv("HF_TOKEN") progress(0, desc="Loading tokenizer...") current_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token) progress(0.5, desc="Loading model...") current_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="cpu", # loaded to CPU initially use_auth_token=token ) progress(1, desc="Model ready.") return f"{model_name} loaded and ready!" # Format conversation as plain text def format_prompt(messages): prompt = "" for msg in messages: role = msg["role"] if role == "user": prompt += f"User: {msg['content'].strip()}\n" elif role == "assistant": prompt += f"Assistant: {msg['content'].strip()}\n" prompt += "Assistant:" return prompt def add_user_message(user_input, history): return "", history + [{"role": "user", "content": user_input}] # Available models model_choices = [ "meta-llama/Llama-3.2-3B-Instruct", "deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "google/gemma-7b" ] # UI with gr.Blocks() as demo: gr.Markdown("## Clinical Chatbot (Streaming) — LLaMA, DeepSeek, Gemma") default_model = gr.State("meta-llama/Llama-3.2-3B-Instruct") # @spaces.GPU # def chat_with_model(messages): # global current_model, current_tokenizer # if current_model is None or current_tokenizer is None: # yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}] # return # current_model = current_model.to("cuda").half() # prompt = format_prompt(messages) # inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device) # output_ids = [] # messages = messages.copy() # messages.append({"role": "assistant", "content": ""}) # for token_id in current_model.generate( # **inputs, # max_new_tokens=256, # do_sample=True, # return_dict_in_generate=True, # output_scores=False # ).sequences[0][inputs['input_ids'].shape[-1]:]: # skip input tokens # output_ids.append(token_id.item()) # decoded = current_tokenizer.decode(output_ids, skip_special_tokens=False) # if output_ids[-1] == current_tokenizer.eos_token_id: # current_model.to("cpu") # torch.cuda.empty_cache() # return # messages[-1]["content"] = decoded # yield messages # current_model.to("cpu") # torch.cuda.empty_cache() # return with gr.Row(): model_selector = gr.Dropdown(choices=model_choices, label="Select Model") model_status = gr.Textbox(label="Model Status", interactive=False) chatbot = gr.Chatbot(label="Chat", type="messages") msg = gr.Textbox(label="Your message", placeholder="Enter clinical input...", show_label=False) clear = gr.Button("Clear") # Load default model on startup demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status) # Load selected model manually model_selector.change(fn=load_model_on_selection, inputs=model_selector, outputs=model_status) # Submit message + stream model response msg.submit(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then( chat_with_model, chatbot, chatbot ) # Clear chat clear.click(lambda: [], None, chatbot, queue=False) demo.launch()