radiolm / app.py
Ruurd's picture
Make it into a chatbot
0115682
raw
history blame
3.32 kB
import os
import torch
import gradio as gr
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM
# Global model/tokenizer
current_model = None
current_tokenizer = None
# Load model when selected
def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
global current_model, current_tokenizer
token = os.getenv("HF_TOKEN")
progress(0, desc="Loading tokenizer...")
current_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)
progress(0.5, desc="Loading model...")
current_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="cpu",
use_auth_token=token
)
progress(1, desc="Model ready.")
return f"{model_name} loaded and ready!"
# Inference - yields response token-by-token
@spaces.GPU
def chat_with_model(history):
global current_model, current_tokenizer
if current_model is None or current_tokenizer is None:
yield history + [("⚠️ No model loaded.", "")]
current_model.to("cuda")
# Combine conversation history into prompt
prompt = ""
for user_msg, bot_msg in history:
prompt += f"[INST] {user_msg.strip()} [/INST] {bot_msg.strip()} "
prompt += f"[INST] {history[-1][0]} [/INST]"
inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
output_ids = []
# Clone history to avoid mutating during yield
updated_history = history.copy()
updated_history[-1] = (history[-1][0], "")
for token_id in current_model.generate(
**inputs,
max_new_tokens=256,
do_sample=False,
return_dict_in_generate=True,
output_scores=False
).sequences[0]:
output_ids.append(token_id.item())
decoded = current_tokenizer.decode(output_ids, skip_special_tokens=True)
updated_history[-1] = (history[-1][0], decoded)
yield updated_history
# When user submits a message
def add_user_message(message, history):
return "", history + [(message, "")]
# Model choices
model_choices = [
"meta-llama/Llama-3.2-3B-Instruct",
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"google/gemma-7b"
]
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## Clinical Chatbot — LLaMA, DeepSeek, Gemma")
default_model = gr.State("meta-llama/Llama-3.2-3B-Instruct")
with gr.Row():
model_selector = gr.Dropdown(choices=model_choices, label="Select Model")
model_status = gr.Textbox(label="Model Status", interactive=False)
chatbot = gr.Chatbot(label="Chat")
msg = gr.Textbox(label="Your Message", placeholder="Enter your clinical query...", show_label=False)
clear_btn = gr.Button("Clear Chat")
# Load model on launch
demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status)
# Load model on dropdown selection
model_selector.change(fn=load_model_on_selection, inputs=model_selector, outputs=model_status)
# On message submit: update history, then stream bot reply
msg.submit(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then(
fn=chat_with_model, inputs=chatbot, outputs=chatbot
)
# Clear chat
clear_btn.click(lambda: [], None, chatbot, queue=False)
demo.launch()