File size: 3,545 Bytes
d0f4aff
5968a97
2db3bb3
d0f4aff
5968a97
5e84c69
4b15ccd
2db3bb3
b6b7c74
 
 
 
 
 
 
 
 
0ebe852
b6b7c74
 
 
 
2db3bb3
b6b7c74
 
65d5ebe
b6b7c74
 
5968a97
2db3bb3
 
 
 
 
 
 
 
 
 
 
 
 
 
5968a97
2db3bb3
5968a97
 
4b15ccd
5968a97
 
 
2db3bb3
5968a97
2db3bb3
b6b7c74
5e84c69
 
b16f2d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0115682
 
 
d0f4aff
2db3bb3
 
 
4b15ccd
2db3bb3
5e84c69
 
2db3bb3
b6b7c74
 
2db3bb3
0115682
2db3bb3
0115682
 
 
2db3bb3
4b15ccd
0ebe852
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import torch
import time
import gradio as gr
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM

# Globals
current_model = None
current_tokenizer = None

def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
    global current_model, current_tokenizer
    token = os.getenv("HF_TOKEN")

    progress(0, desc="Loading tokenizer...")
    current_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)

    progress(0.5, desc="Loading model...")
    current_model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float16,
        device_map="cpu",  # loaded to CPU initially
        use_auth_token=token
    )

    progress(1, desc="Model ready.")
    return f"{model_name} loaded and ready!"

# Format conversation as plain text
def format_prompt(messages):
    prompt = ""
    for msg in messages:
        role = msg["role"]
        if role == "user":
            prompt += f"User: {msg['content'].strip()}\n"
        elif role == "assistant":
            prompt += f"Assistant: {msg['content'].strip()}\n"
    prompt += "Assistant:"
    return prompt

def add_user_message(user_input, history):
    return "", history + [{"role": "user", "content": user_input}]

# Available models
model_choices = [
    "meta-llama/Llama-3.2-3B-Instruct",
    "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
    "google/gemma-7b"
]

# UI
with gr.Blocks() as demo:
    gr.Markdown("## Clinical Chatbot (Streaming) — LLaMA, DeepSeek, Gemma")

    default_model = gr.State("meta-llama/Llama-3.2-3B-Instruct")

    @spaces.GPU
    def chat_with_model(messages):
        global current_model, current_tokenizer
        if current_model is None or current_tokenizer is None:
            yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}]
            return

        current_model.to("cuda")

        prompt = format_prompt(messages)
        inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)

        output_ids = []
        messages = messages.copy()
        messages.append({"role": "assistant", "content": ""})

        for token_id in current_model.generate(
            **inputs,
            max_new_tokens=256,
            do_sample=False,
            return_dict_in_generate=True,
            output_scores=False
        ).sequences[0][inputs['input_ids'].shape[-1]:]:  # skip input tokens
            output_ids.append(token_id.item())
            decoded = current_tokenizer.decode(output_ids, skip_special_tokens=True)
            messages[-1]["content"] = decoded
            yield messages

    with gr.Row():
        model_selector = gr.Dropdown(choices=model_choices, label="Select Model")
        model_status = gr.Textbox(label="Model Status", interactive=False)

    chatbot = gr.Chatbot(label="Chat", type="messages")
    msg = gr.Textbox(label="Your message", placeholder="Enter clinical input...", show_label=False)
    clear = gr.Button("Clear")

    # Load default model on startup
    demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status)

    # Load selected model manually
    model_selector.change(fn=load_model_on_selection, inputs=model_selector, outputs=model_status)

    # Submit message + stream model response
    msg.submit(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then(
        chat_with_model, chatbot, chatbot
    )

    # Clear chat
    clear.click(lambda: [], None, chatbot, queue=False)

demo.launch()