import streamlit as st from text2sql import ChatBot from langdetect import detect from utils.translate_utils import translate_zh_to_en from utils.db_utils import add_a_record from langdetect.lang_detect_exception import LangDetectException # Initialize chatbot and other variables text2sql_bot = ChatBot() baidu_api_token = None # Define database schemas for demonstration db_schemas = { "singer": """ CREATE TABLE "singer" ( "Singer_ID" int, "Name" text, "Birth_Year" real, "Net_Worth_Millions" real, "Citizenship" text, PRIMARY KEY ("Singer_ID") ); CREATE TABLE "song" ( "Song_ID" int, "Title" text, "Singer_ID" int, "Sales" real, "Highest_Position" real, PRIMARY KEY ("Song_ID"), FOREIGN KEY ("Singer_ID") REFERENCES "singer"("Singer_ID") ); """, # Add other schemas as needed } # Streamlit UI st.title("Text-to-SQL Chatbot") st.sidebar.header("Select a Database") # Sidebar for selecting a database selected_db = st.sidebar.selectbox("Choose a database:", list(db_schemas.keys())) # Display the selected schema st.sidebar.text_area("Database Schema", db_schemas[selected_db], height=600) # User input section question = st.text_input("Enter your question:") db_id = selected_db # Use selected database for DB ID if question: add_a_record(question, db_id) try: if baidu_api_token is not None and detect(question) != "en": print("Before translation:", question) question = translate_zh_to_en(question, baidu_api_token) print("After translation:", question) except LangDetectException as e: print("Language detection error:", str(e)) predicted_sql = text2sql_bot.get_response(question, db_id) st.write(f"**Database:** {db_id}") st.write(f"**Predicted SQL query:** {predicted_sql}")