LangSQL / app.py
Roxanne-WANG's picture
update weight loading
b5be522
raw
history blame
4.44 kB
# import streamlit as st
# from text2sql import ChatBot
# from langdetect import detect
# from utils.translate_utils import translate_zh_to_en
# from utils.db_utils import add_a_record
# from langdetect.lang_detect_exception import LangDetectException
# # Initialize chatbot and other variables
# text2sql_bot = ChatBot()
# baidu_api_token = None
# # Define database schemas for demonstration
# db_schemas = {
# "singer": """
# CREATE TABLE "singer" (
# "Singer_ID" int,
# "Name" text,
# "Birth_Year" real,
# "Net_Worth_Millions" real,
# "Citizenship" text,
# PRIMARY KEY ("Singer_ID")
# );
# CREATE TABLE "song" (
# "Song_ID" int,
# "Title" text,
# "Singer_ID" int,
# "Sales" real,
# "Highest_Position" real,
# PRIMARY KEY ("Song_ID"),
# FOREIGN KEY ("Singer_ID") REFERENCES "singer"("Singer_ID")
# );
# """,
# # Add other schemas as needed
# }
# # Streamlit UI
# st.title("Text-to-SQL Chatbot")
# st.sidebar.header("Select a Database")
# # Sidebar for selecting a database
# selected_db = st.sidebar.selectbox("Choose a database:", list(db_schemas.keys()))
# # Display the selected schema
# st.sidebar.text_area("Database Schema", db_schemas[selected_db], height=600)
# # User input section
# question = st.text_input("Enter your question:")
# db_id = selected_db # Use selected database for DB ID
# if question:
# add_a_record(question, db_id)
# try:
# if baidu_api_token is not None and detect(question) != "en":
# print("Before translation:", question)
# question = translate_zh_to_en(question, baidu_api_token)
# print("After translation:", question)
# except LangDetectException as e:
# print("Language detection error:", str(e))
# predicted_sql = text2sql_bot.get_response(question, db_id)
# st.write(f"**Database:** {db_id}")
# st.write(f"**Predicted SQL query:** {predicted_sql}")
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from langdetect import detect
from utils.translate_utils import translate_zh_to_en
from utils.db_utils import add_a_record
from langdetect.lang_detect_exception import LangDetectException
class SchemaItemClassifierInference:
def __init__(self, model_name):
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
self.model = AutoModelForSequenceClassification.from_pretrained(model_name, use_auth_token=True)
def predict(self, text):
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = self.model(**inputs)
return outputs.logits
class ChatBot:
def __init__(self):
model_name = "Roxanne-WANG/LangSQL"
self.sic = SchemaItemClassifierInference(model_name)
def get_response(self, question, db_id):
prediction = self.sic.predict(question)
return prediction
text2sql_bot = ChatBot()
baidu_api_token = None
db_schemas = {
"singer": """
CREATE TABLE "singer" (
"Singer_ID" int,
"Name" text,
"Birth_Year" real,
"Net_Worth_Millions" real,
"Citizenship" text,
PRIMARY KEY ("Singer_ID")
);
CREATE TABLE "song" (
"Song_ID" int,
"Title" text,
"Singer_ID" int,
"Sales" real,
"Highest_Position" real,
PRIMARY KEY ("Song_ID"),
FOREIGN KEY ("Singer_ID") REFERENCES "singer"("Singer_ID")
);
""",
}
# Streamlit UI
st.title("Text-to-SQL Chatbot")
st.sidebar.header("Select a Database")
selected_db = st.sidebar.selectbox("Choose a database:", list(db_schemas.keys()))
st.sidebar.text_area("Database Schema", db_schemas[selected_db], height=600)
question = st.text_input("Enter your question:")
db_id = selected_db
if question:
add_a_record(question, db_id)
try:
if baidu_api_token is not None and detect(question) != "en":
print("Before translation:", question)
question = translate_zh_to_en(question, baidu_api_token)
print("After translation:", question)
except LangDetectException as e:
print("Language detection error:", str(e))
predicted_sql = text2sql_bot.get_response(question, db_id)
st.write(f"**Database:** {db_id}")
st.write(f"**Predicted SQL query:** {predicted_sql}")