Spaces:
Paused
Paused
File size: 12,526 Bytes
b759b87 749f953 b759b87 8433589 1238103 b759b87 749f953 b759b87 749f953 b759b87 749f953 b759b87 749f953 b759b87 749f953 b759b87 749f953 b759b87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import os
import json
import sqlite3
from func_timeout import func_set_timeout, FunctionTimedOut
from utils.bridge_content_encoder import get_matched_entries
from nltk.tokenize import word_tokenize
from nltk import ngrams
from whoosh.qparser import QueryParser
def add_a_record(question, db_id):
conn = sqlite3.connect('data/history/history.sqlite')
cursor = conn.cursor()
cursor.execute("INSERT INTO record (question, db_id) VALUES (?, ?)", (question, db_id))
conn.commit()
conn.close()
def obtain_n_grams(sequence, max_n):
import nltk
nltk.download('punkt')
nltk.download('punkt_tab')
tokens = word_tokenize(sequence)
all_grams = []
for n in range(1, max_n + 1):
all_grams.extend([" ".join(gram) for gram in ngrams(tokens, n)])
return all_grams
# get the database cursor for a sqlite database path
def get_cursor_from_path(sqlite_path):
try:
if not os.path.exists(sqlite_path):
print("Openning a new connection %s" % sqlite_path)
connection = sqlite3.connect(sqlite_path, check_same_thread = False)
except Exception as e:
print(sqlite_path)
raise e
connection.text_factory = lambda b: b.decode(errors="ignore")
cursor = connection.cursor()
return cursor
# execute predicted sql with a time limitation
@func_set_timeout(15)
def execute_sql(cursor, sql):
cursor.execute(sql)
return cursor.fetchall()
# execute predicted sql with a long time limitation (for buiding content index)
@func_set_timeout(2000)
def execute_sql_long_time_limitation(cursor, sql):
cursor.execute(sql)
return cursor.fetchall()
def check_sql_executability(generated_sql, db):
if generated_sql.strip() == "":
return "Error: empty string"
try:
cursor = get_cursor_from_path(db)
execute_sql(cursor, generated_sql)
execution_error = None
except FunctionTimedOut as fto:
print("SQL execution time out error: {}.".format(fto))
execution_error = "SQL execution times out."
except Exception as e:
print("SQL execution runtime error: {}.".format(e))
execution_error = str(e)
return execution_error
def is_number(s):
try:
float(s)
return True
except ValueError:
return False
def detect_special_char(name):
for special_char in ['(', '-', ')', ' ', '/']:
if special_char in name:
return True
return False
def add_quotation_mark(s):
return "`" + s + "`"
def get_column_contents(column_name, table_name, cursor):
select_column_sql = "SELECT DISTINCT `{}` FROM `{}` WHERE `{}` IS NOT NULL LIMIT 2;".format(column_name, table_name, column_name)
results = execute_sql_long_time_limitation(cursor, select_column_sql)
column_contents = [str(result[0]).strip() for result in results]
# remove empty and extremely-long contents
column_contents = [content for content in column_contents if len(content) != 0 and len(content) <= 25]
return column_contents
def get_matched_contents(question, searcher):
# Coarse-grained matching between the input text and all contents in database
grams = obtain_n_grams(question, 4)
hits = []
# Parse each n-gram query into a valid Whoosh query object
for query in grams:
query_parser = QueryParser("content", schema=searcher.schema) # 'content' should match the field you are searching
parsed_query = query_parser.parse(query) # Convert the query string into a Whoosh Query object
hits.extend(searcher.search(parsed_query, limit=10)) # Perform the search with the parsed query
coarse_matched_contents = dict()
for hit in hits:
matched_result = json.loads(hit.raw)
# `tc_name` refers to column names like `table_name.column_name`, e.g., document_drafts.document_id
tc_name = ".".join(matched_result["id"].split("-**-")[:2])
if tc_name in coarse_matched_contents.keys():
if matched_result["contents"] not in coarse_matched_contents[tc_name]:
coarse_matched_contents[tc_name].append(matched_result["contents"])
else:
coarse_matched_contents[tc_name] = [matched_result["contents"]]
fine_matched_contents = dict()
for tc_name, contents in coarse_matched_contents.items():
# Fine-grained matching between the question and coarse matched contents
fm_contents = get_matched_entries(question, contents)
if fm_contents is None:
continue
for _match_str, (field_value, _s_match_str, match_score, s_match_score, _match_size,) in fm_contents:
if match_score < 0.9:
continue
if tc_name in fine_matched_contents.keys():
if len(fine_matched_contents[tc_name]) < 25:
fine_matched_contents[tc_name].append(field_value.strip())
else:
fine_matched_contents[tc_name] = [field_value.strip()]
return fine_matched_contents
# def get_matched_contents(question, searcher):
# # coarse-grained matching between the input text and all contents in database
# grams = obtain_n_grams(question, 4)
# hits = []
# for query in grams:
# hits.extend(searcher.search(query, limit = 10))
# coarse_matched_contents = dict()
# for i in range(len(hits)):
# matched_result = json.loads(hits[i].raw)
# # `tc_name` refers to column names like `table_name.column_name`, e.g., document_drafts.document_id
# tc_name = ".".join(matched_result["id"].split("-**-")[:2])
# if tc_name in coarse_matched_contents.keys():
# if matched_result["contents"] not in coarse_matched_contents[tc_name]:
# coarse_matched_contents[tc_name].append(matched_result["contents"])
# else:
# coarse_matched_contents[tc_name] = [matched_result["contents"]]
# fine_matched_contents = dict()
# for tc_name, contents in coarse_matched_contents.items():
# # fine-grained matching between the question and coarse matched contents
# fm_contents = get_matched_entries(question, contents)
# if fm_contents is None:
# continue
# for _match_str, (field_value, _s_match_str, match_score, s_match_score, _match_size,) in fm_contents:
# if match_score < 0.9:
# continue
# if tc_name in fine_matched_contents.keys():
# if len(fine_matched_contents[tc_name]) < 25:
# fine_matched_contents[tc_name].append(field_value.strip())
# else:
# fine_matched_contents[tc_name] = [field_value.strip()]
# return fine_matched_contents
def get_db_schema_sequence(schema):
schema_sequence = "database schema :\n"
for table in schema["schema_items"]:
table_name, table_comment = table["table_name"], table["table_comment"]
if detect_special_char(table_name):
table_name = add_quotation_mark(table_name)
# if table_comment != "":
# table_name += " ( comment : " + table_comment + " )"
column_info_list = []
for column_name, column_type, column_comment, column_content, pk_indicator in \
zip(table["column_names"], table["column_types"], table["column_comments"], table["column_contents"], table["pk_indicators"]):
if detect_special_char(column_name):
column_name = add_quotation_mark(column_name)
additional_column_info = []
# column type
additional_column_info.append(column_type)
# pk indicator
if pk_indicator != 0:
additional_column_info.append("primary key")
# column comment
if column_comment != "":
additional_column_info.append("comment : " + column_comment)
# representive column values
if len(column_content) != 0:
additional_column_info.append("values : " + " , ".join(column_content))
column_info_list.append(table_name + "." + column_name + " ( " + " | ".join(additional_column_info) + " )")
schema_sequence += "table "+ table_name + " , columns = [ " + " , ".join(column_info_list) + " ]\n"
if len(schema["foreign_keys"]) != 0:
schema_sequence += "foreign keys :\n"
for foreign_key in schema["foreign_keys"]:
for i in range(len(foreign_key)):
if detect_special_char(foreign_key[i]):
foreign_key[i] = add_quotation_mark(foreign_key[i])
schema_sequence += "{}.{} = {}.{}\n".format(foreign_key[0], foreign_key[1], foreign_key[2], foreign_key[3])
else:
schema_sequence += "foreign keys : None\n"
return schema_sequence.strip()
def get_matched_content_sequence(matched_contents):
content_sequence = ""
if len(matched_contents) != 0:
content_sequence += "matched contents :\n"
for tc_name, contents in matched_contents.items():
table_name = tc_name.split(".")[0]
column_name = tc_name.split(".")[1]
if detect_special_char(table_name):
table_name = add_quotation_mark(table_name)
if detect_special_char(column_name):
column_name = add_quotation_mark(column_name)
content_sequence += table_name + "." + column_name + " ( " + " , ".join(contents) + " )\n"
else:
content_sequence = "matched contents : None"
return content_sequence.strip()
def get_db_schema(db_path, db_comments, db_id):
if db_id in db_comments:
db_comment = db_comments[db_id]
else:
db_comment = None
cursor = get_cursor_from_path(db_path)
# obtain table names
results = execute_sql(cursor, "SELECT name FROM sqlite_master WHERE type='table';")
table_names = [result[0].lower() for result in results]
schema = dict()
schema["schema_items"] = []
foreign_keys = []
# for each table
for table_name in table_names:
# skip SQLite system table: sqlite_sequence
if table_name == "sqlite_sequence":
continue
# obtain column names in the current table
results = execute_sql(cursor, "SELECT name, type, pk FROM PRAGMA_TABLE_INFO('{}')".format(table_name))
column_names_in_one_table = [result[0].lower() for result in results]
column_types_in_one_table = [result[1].lower() for result in results]
pk_indicators_in_one_table = [result[2] for result in results]
column_contents = []
for column_name in column_names_in_one_table:
column_contents.append(get_column_contents(column_name, table_name, cursor))
# obtain foreign keys in the current table
results = execute_sql(cursor, "SELECT * FROM pragma_foreign_key_list('{}');".format(table_name))
for result in results:
if None not in [result[3], result[2], result[4]]:
foreign_keys.append([table_name.lower(), result[3].lower(), result[2].lower(), result[4].lower()])
# obtain comments for each schema item
if db_comment is not None:
if table_name in db_comment: # record comments for tables and columns
table_comment = db_comment[table_name]["table_comment"]
column_comments = [db_comment[table_name]["column_comments"][column_name] \
if column_name in db_comment[table_name]["column_comments"] else "" \
for column_name in column_names_in_one_table]
else: # current database has comment information, but the current table does not
table_comment = ""
column_comments = ["" for _ in column_names_in_one_table]
else: # current database has no comment information
table_comment = ""
column_comments = ["" for _ in column_names_in_one_table]
schema["schema_items"].append({
"table_name": table_name,
"table_comment": table_comment,
"column_names": column_names_in_one_table,
"column_types": column_types_in_one_table,
"column_comments": column_comments,
"column_contents": column_contents,
"pk_indicators": pk_indicators_in_one_table
})
schema["foreign_keys"] = foreign_keys
return schema
|