|
import streamlit as st |
|
import pandas as pd |
|
import requests |
|
import plotly.express as px |
|
import plotly.graph_objects as go |
|
from plotly.subplots import make_subplots |
|
import numpy as np |
|
import tempfile |
|
import os |
|
|
|
|
|
st.set_page_config( |
|
page_title="碳排放數據可視化分析", |
|
page_icon="🌱", |
|
layout="wide", |
|
initial_sidebar_state="expanded" |
|
) |
|
|
|
|
|
st.title("🌱 碳排放數據可視化分析") |
|
st.markdown("---") |
|
st.write("此應用程式分析台灣公司的碳排放數據,包括範疇一和範疇二的排放量。") |
|
|
|
|
|
st.sidebar.header("⚙️ 設置選項") |
|
|
|
|
|
@st.cache_data |
|
def load_data(): |
|
"""載入並處理碳排放數據""" |
|
try: |
|
|
|
with st.spinner("正在載入數據..."): |
|
url = "https://mopsfin.twse.com.tw/opendata/t187ap46_O_1.csv" |
|
response = requests.get(url) |
|
|
|
|
|
with tempfile.NamedTemporaryFile(mode='wb', suffix='.csv', delete=False) as tmp_file: |
|
tmp_file.write(response.content) |
|
tmp_file_path = tmp_file.name |
|
|
|
|
|
df = pd.read_csv(tmp_file_path, encoding="utf-8-sig") |
|
|
|
|
|
os.unlink(tmp_file_path) |
|
|
|
|
|
original_shape = df.shape |
|
df = df.dropna() |
|
|
|
|
|
company_cols = [col for col in df.columns if "公司" in col or "代號" in col or "股票" in col] |
|
emission_cols = [col for col in df.columns if "排放" in col] |
|
|
|
|
|
company_col = "公司代號" |
|
scope1_col = "範疇一排放量(公噸CO2e)" |
|
scope2_col = "範疇二排放量(公噸CO2e)" |
|
|
|
if company_col not in df.columns and company_cols: |
|
company_col = company_cols[0] |
|
|
|
if scope1_col not in df.columns: |
|
scope1_candidates = [col for col in emission_cols if "範疇一" in col or "Scope1" in col] |
|
if scope1_candidates: |
|
scope1_col = scope1_candidates[0] |
|
|
|
if scope2_col not in df.columns: |
|
scope2_candidates = [col for col in emission_cols if "範疇二" in col or "Scope2" in col] |
|
if scope2_candidates: |
|
scope2_col = scope2_candidates[0] |
|
|
|
|
|
if scope1_col in df.columns: |
|
df[scope1_col] = pd.to_numeric(df[scope1_col], errors='coerce') |
|
if scope2_col in df.columns: |
|
df[scope2_col] = pd.to_numeric(df[scope2_col], errors='coerce') |
|
|
|
|
|
available_cols = [col for col in [scope1_col, scope2_col, company_col] if col in df.columns] |
|
df = df.dropna(subset=available_cols) |
|
|
|
return df, original_shape, company_col, scope1_col, scope2_col, company_cols, emission_cols |
|
|
|
except Exception as e: |
|
st.error(f"載入數據時發生錯誤: {str(e)}") |
|
return None, None, None, None, None, None, None |
|
|
|
|
|
data_result = load_data() |
|
if data_result[0] is not None: |
|
df, original_shape, company_col, scope1_col, scope2_col, company_cols, emission_cols = data_result |
|
|
|
|
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
st.metric("原始數據筆數", original_shape[0]) |
|
with col2: |
|
st.metric("處理後數據筆數", df.shape[0]) |
|
with col3: |
|
st.metric("總欄位數", df.shape[1]) |
|
|
|
|
|
st.sidebar.subheader("📊 圖表選項") |
|
|
|
|
|
chart_types = st.sidebar.multiselect( |
|
"選擇要顯示的圖表:", |
|
["旭日圖", "雙層圓餅圖", "散點圖", "綜合旭日圖"], |
|
default=["旭日圖", "雙層圓餅圖"] |
|
) |
|
|
|
|
|
max_companies = min(30, len(df)) |
|
num_companies = st.sidebar.slider( |
|
"顯示公司數量:", |
|
min_value=5, |
|
max_value=max_companies, |
|
value=min(15, max_companies), |
|
step=5 |
|
) |
|
|
|
|
|
if st.sidebar.checkbox("顯示數據統計", value=True): |
|
st.subheader("📈 數據統計摘要") |
|
|
|
if all(col in df.columns for col in [scope1_col, scope2_col]): |
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
st.write("**範疇一排放量統計:**") |
|
scope1_stats = df[scope1_col].describe() |
|
st.write(f"- 平均值: {scope1_stats['mean']:.2f} 公噸CO2e") |
|
st.write(f"- 中位數: {scope1_stats['50%']:.2f} 公噸CO2e") |
|
st.write(f"- 最大值: {scope1_stats['max']:.2f} 公噸CO2e") |
|
st.write(f"- 最小值: {scope1_stats['min']:.2f} 公噸CO2e") |
|
|
|
with col2: |
|
st.write("**範疇二排放量統計:**") |
|
scope2_stats = df[scope2_col].describe() |
|
st.write(f"- 平均值: {scope2_stats['mean']:.2f} 公噸CO2e") |
|
st.write(f"- 中位數: {scope2_stats['50%']:.2f} 公噸CO2e") |
|
st.write(f"- 最大值: {scope2_stats['max']:.2f} 公噸CO2e") |
|
st.write(f"- 最小值: {scope2_stats['min']:.2f} 公噸CO2e") |
|
|
|
|
|
def create_sunburst_chart(df, num_companies): |
|
"""創建旭日圖""" |
|
if all(col in df.columns for col in [company_col, scope1_col, scope2_col]): |
|
df_top = df.nlargest(num_companies, scope1_col) |
|
sunburst_data = [] |
|
|
|
for _, row in df_top.iterrows(): |
|
company = str(row[company_col]) |
|
scope1 = row[scope1_col] |
|
scope2 = row[scope2_col] |
|
|
|
sunburst_data.extend([ |
|
dict(ids=f"公司-{company}", labels=f"公司 {company}", parents="", values=scope1 + scope2), |
|
dict(ids=f"範疇一-{company}", labels=f"範疇一: {scope1:.0f}", parents=f"公司-{company}", values=scope1), |
|
dict(ids=f"範疇二-{company}", labels=f"範疇二: {scope2:.0f}", parents=f"公司-{company}", values=scope2) |
|
]) |
|
|
|
fig_sunburst = go.Figure(go.Sunburst( |
|
ids=[d['ids'] for d in sunburst_data], |
|
labels=[d['labels'] for d in sunburst_data], |
|
parents=[d['parents'] for d in sunburst_data], |
|
values=[d['values'] for d in sunburst_data], |
|
branchvalues="total", |
|
hovertemplate='<b>%{label}</b><br>排放量: %{value:.0f} 公噸CO2e<extra></extra>', |
|
maxdepth=3 |
|
)) |
|
|
|
fig_sunburst.update_layout( |
|
title=f"碳排放量旭日圖 (前{num_companies}家公司)", |
|
font_size=12, |
|
height=600 |
|
) |
|
|
|
return fig_sunburst |
|
return None |
|
|
|
def create_nested_pie_chart(df, num_companies): |
|
"""創建雙層圓餅圖""" |
|
if all(col in df.columns for col in [company_col, scope1_col, scope2_col]): |
|
df_top = df.nlargest(num_companies, scope1_col) |
|
|
|
fig = make_subplots( |
|
rows=1, cols=2, |
|
specs=[[{"type": "pie"}, {"type": "pie"}]], |
|
subplot_titles=("範疇一排放量", "範疇二排放量") |
|
) |
|
|
|
fig.add_trace(go.Pie( |
|
labels=df_top[company_col], |
|
values=df_top[scope1_col], |
|
name="範疇一", |
|
hovertemplate='<b>%{label}</b><br>範疇一排放量: %{value:.0f} 公噸CO2e<br>佔比: %{percent}<extra></extra>', |
|
textinfo='label+percent', |
|
textposition='auto' |
|
), row=1, col=1) |
|
|
|
fig.add_trace(go.Pie( |
|
labels=df_top[company_col], |
|
values=df_top[scope2_col], |
|
name="範疇二", |
|
hovertemplate='<b>%{label}</b><br>範疇二排放量: %{value:.0f} 公噸CO2e<br>佔比: %{percent}<extra></extra>', |
|
textinfo='label+percent', |
|
textposition='auto' |
|
), row=1, col=2) |
|
|
|
fig.update_layout( |
|
title_text=f"碳排放量圓餅圖比較 (前{num_companies}家公司)", |
|
showlegend=True, |
|
height=600 |
|
) |
|
|
|
return fig |
|
return None |
|
|
|
def create_scatter_plot(df): |
|
"""創建散點圖""" |
|
if all(col in df.columns for col in [company_col, scope1_col, scope2_col]): |
|
fig_scatter = px.scatter( |
|
df, |
|
x=scope1_col, |
|
y=scope2_col, |
|
hover_data=[company_col], |
|
title="範疇一 vs 範疇二排放量散點圖", |
|
labels={ |
|
scope1_col: "範疇一排放量 (公噸CO2e)", |
|
scope2_col: "範疇二排放量 (公噸CO2e)" |
|
}, |
|
hover_name=company_col |
|
) |
|
|
|
fig_scatter.update_layout(height=600) |
|
return fig_scatter |
|
return None |
|
|
|
def create_comprehensive_sunburst(df, num_companies): |
|
"""創建綜合旭日圖""" |
|
if all(col in df.columns for col in [company_col, scope1_col, scope2_col]): |
|
df_copy = df.copy() |
|
df_copy['total_emission'] = df_copy[scope1_col] + df_copy[scope2_col] |
|
df_copy['emission_level'] = pd.cut(df_copy['total_emission'], |
|
bins=[0, 1000, 5000, 20000, float('inf')], |
|
labels=['低排放(<1K)', '中排放(1K-5K)', '高排放(5K-20K)', '超高排放(>20K)']) |
|
|
|
sunburst_data = [] |
|
companies_per_level = max(1, num_companies // 4) |
|
|
|
for level in df_copy['emission_level'].unique(): |
|
if pd.isna(level): |
|
continue |
|
level_companies = df_copy[df_copy['emission_level'] == level].nlargest(companies_per_level, 'total_emission') |
|
|
|
for _, row in level_companies.iterrows(): |
|
company = str(row[company_col]) |
|
scope1 = row[scope1_col] |
|
scope2 = row[scope2_col] |
|
total = scope1 + scope2 |
|
|
|
sunburst_data.extend([ |
|
dict(ids=str(level), labels=str(level), parents="", values=total), |
|
dict(ids=f"{level}-{company}", labels=f"{company}", parents=str(level), values=total), |
|
dict(ids=f"{level}-{company}-範疇一", labels=f"範疇一({scope1:.0f})", |
|
parents=f"{level}-{company}", values=scope1), |
|
dict(ids=f"{level}-{company}-範疇二", labels=f"範疇二({scope2:.0f})", |
|
parents=f"{level}-{company}", values=scope2) |
|
]) |
|
|
|
fig_comprehensive = go.Figure(go.Sunburst( |
|
ids=[d['ids'] for d in sunburst_data], |
|
labels=[d['labels'] for d in sunburst_data], |
|
parents=[d['parents'] for d in sunburst_data], |
|
values=[d['values'] for d in sunburst_data], |
|
branchvalues="total", |
|
hovertemplate='<b>%{label}</b><br>排放量: %{value:.0f} 公噸CO2e<extra></extra>', |
|
maxdepth=4 |
|
)) |
|
|
|
fig_comprehensive.update_layout( |
|
title="分級碳排放量旭日圖", |
|
font_size=10, |
|
height=700 |
|
) |
|
|
|
return fig_comprehensive |
|
return None |
|
|
|
|
|
st.subheader("📊 互動式圖表") |
|
|
|
if "旭日圖" in chart_types: |
|
st.write("### 🌞 旭日圖") |
|
fig1 = create_sunburst_chart(df, num_companies) |
|
if fig1: |
|
st.plotly_chart(fig1, use_container_width=True) |
|
else: |
|
st.error("無法創建旭日圖,缺少必要欄位") |
|
|
|
if "雙層圓餅圖" in chart_types: |
|
st.write("### 🥧 雙層圓餅圖") |
|
fig2 = create_nested_pie_chart(df, num_companies) |
|
if fig2: |
|
st.plotly_chart(fig2, use_container_width=True) |
|
else: |
|
st.error("無法創建圓餅圖,缺少必要欄位") |
|
|
|
if "散點圖" in chart_types: |
|
st.write("### 📈 散點圖") |
|
fig3 = create_scatter_plot(df) |
|
if fig3: |
|
st.plotly_chart(fig3, use_container_width=True) |
|
else: |
|
st.error("無法創建散點圖,缺少必要欄位") |
|
|
|
if "綜合旭日圖" in chart_types: |
|
st.write("### 🌟 綜合旭日圖") |
|
fig4 = create_comprehensive_sunburst(df, num_companies) |
|
if fig4: |
|
st.plotly_chart(fig4, use_container_width=True) |
|
else: |
|
st.error("無法創建綜合旭日圖,缺少必要欄位") |
|
|
|
|
|
if st.sidebar.checkbox("顯示原始數據"): |
|
st.subheader("📋 原始數據預覽") |
|
st.dataframe(df.head(100), use_container_width=True) |
|
|
|
|
|
if st.sidebar.button("下載處理後數據"): |
|
csv = df.to_csv(index=False, encoding='utf-8-sig') |
|
st.sidebar.download_button( |
|
label="💾 下載 CSV 文件", |
|
data=csv, |
|
file_name="carbon_emission_data.csv", |
|
mime="text/csv" |
|
) |
|
|
|
|
|
if st.sidebar.checkbox("顯示偵錯信息"): |
|
st.subheader("🔧 偵錯信息") |
|
st.write("**識別的欄位:**") |
|
st.write(f"- 公司欄位: {company_col}") |
|
st.write(f"- 範疇一欄位: {scope1_col}") |
|
st.write(f"- 範疇二欄位: {scope2_col}") |
|
st.write("**所有可用欄位:**") |
|
st.write(df.columns.tolist()) |
|
|
|
else: |
|
st.error("無法載入數據,請檢查網路連接或數據源。") |
|
|
|
|
|
st.markdown("---") |
|
st.markdown( |
|
""" |
|
**數據來源:** 台灣證券交易所公開資訊觀測站 |
|
**更新時間:** 根據數據源自動更新 |
|
**製作:** Streamlit 碳排放數據分析應用 |
|
""" |
|
) |