Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,31 @@
|
|
1 |
-
import
|
2 |
-
from transformers import
|
3 |
from PIL import Image
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
model = AutoModel.from_pretrained(model_name)
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
-
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
image_input = feature_extractor(images=image, return_tensors="pt")
|
15 |
-
text_input = tokenizer(text, return_tensors="pt")
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
#
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
outputs="text",
|
28 |
-
title="deepseek-vl2-small Demo"
|
29 |
-
)
|
30 |
|
31 |
-
# Launch app
|
32 |
-
interface.launch()
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
3 |
from PIL import Image
|
4 |
|
5 |
+
# ✅ Define the model name from Hugging Face
|
6 |
+
MODEL_NAME = "deepseek-ai/deepseek-vl2-small"
|
|
|
|
|
|
|
7 |
|
8 |
+
# ✅ Load model and processor
|
9 |
+
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
10 |
+
model = AutoModelForVision2Seq.from_pretrained(MODEL_NAME, torch_dtype=torch.float16)
|
|
|
|
|
11 |
|
12 |
+
# ✅ Test the model with an image
|
13 |
+
def predict(image_path):
|
14 |
+
image = Image.open(image_path).convert("RGB")
|
15 |
+
|
16 |
+
# Process input
|
17 |
+
inputs = processor(images=image, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
|
19 |
+
# Generate output
|
20 |
+
output = model.generate(**inputs)
|
21 |
+
|
22 |
+
# Decode response
|
23 |
+
generated_text = processor.batch_decode(output, skip_special_tokens=True)[0]
|
24 |
+
|
25 |
+
return generated_text
|
26 |
|
27 |
+
# ✅ Example Usage
|
28 |
+
if __name__ == "__main__":
|
29 |
+
test_image_path = "test.jpg" # Replace with an actual image path
|
30 |
+
print("Generated Output:", predict(test_image_path))
|
|
|
|
|
|
|
31 |
|
|
|
|