Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import faiss
|
4 |
+
import numpy as np
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
|
8 |
+
# ---------------------------
|
9 |
+
# Load Models (cached on first run)
|
10 |
+
# ---------------------------
|
11 |
+
def load_models():
|
12 |
+
hf_token = os.getenv("HF_TOKEN") # Set this secret in your HF Space settings
|
13 |
+
embed_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') # For embeddings
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-3-4b-it", use_auth_token=hf_token)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
"google/gemma-3-4b-it",
|
17 |
+
device_map="auto",
|
18 |
+
low_cpu_mem_usage=True,
|
19 |
+
use_auth_token=hf_token
|
20 |
+
)
|
21 |
+
return embed_model, tokenizer, model
|
22 |
+
|
23 |
+
embed_model, tokenizer, model = load_models()
|
24 |
+
|
25 |
+
# ---------------------------
|
26 |
+
# Global state for FAISS index and document chunks.
|
27 |
+
# Using a dictionary to hold state.
|
28 |
+
state = {
|
29 |
+
"faiss_index": None,
|
30 |
+
"doc_chunks": []
|
31 |
+
}
|
32 |
+
|
33 |
+
# ---------------------------
|
34 |
+
# Document Processing Function
|
35 |
+
# ---------------------------
|
36 |
+
def process_document(file, chunk_size, chunk_overlap):
|
37 |
+
"""
|
38 |
+
Reads the uploaded file (PDF or text), extracts text, splits into chunks,
|
39 |
+
computes embeddings, and builds a FAISS index.
|
40 |
+
"""
|
41 |
+
if file is None:
|
42 |
+
return "No file uploaded."
|
43 |
+
|
44 |
+
file_bytes = file.read()
|
45 |
+
file_name = file.name
|
46 |
+
text = ""
|
47 |
+
|
48 |
+
if file_name.lower().endswith(".pdf"):
|
49 |
+
try:
|
50 |
+
from PyPDF2 import PdfReader
|
51 |
+
except ImportError:
|
52 |
+
return "Error: PyPDF2 is required for PDF extraction."
|
53 |
+
# Save file to temporary path
|
54 |
+
temp_path = os.path.join("temp", file_name)
|
55 |
+
os.makedirs("temp", exist_ok=True)
|
56 |
+
with open(temp_path, "wb") as f:
|
57 |
+
f.write(file_bytes)
|
58 |
+
reader = PdfReader(temp_path)
|
59 |
+
for page in reader.pages:
|
60 |
+
text += page.extract_text() or ""
|
61 |
+
else:
|
62 |
+
# Assume it's a text file
|
63 |
+
text = file_bytes.decode("utf-8", errors="ignore")
|
64 |
+
|
65 |
+
if text.strip() == "":
|
66 |
+
return "No text found in the document."
|
67 |
+
|
68 |
+
# Split text into overlapping chunks
|
69 |
+
chunks = []
|
70 |
+
for start in range(0, len(text), chunk_size - chunk_overlap):
|
71 |
+
chunk_text = text[start: start + chunk_size]
|
72 |
+
chunks.append(chunk_text)
|
73 |
+
|
74 |
+
# Compute embeddings for each chunk using the embedding model.
|
75 |
+
embeddings = embed_model.encode(chunks, normalize_embeddings=True).astype('float32')
|
76 |
+
dim = embeddings.shape[1]
|
77 |
+
|
78 |
+
# Build FAISS index using cosine similarity (normalized vectors -> inner product)
|
79 |
+
index = faiss.IndexFlatIP(dim)
|
80 |
+
index.add(embeddings)
|
81 |
+
|
82 |
+
# Update global state
|
83 |
+
state["faiss_index"] = index
|
84 |
+
state["doc_chunks"] = chunks
|
85 |
+
|
86 |
+
# Return a preview (first 500 characters of the first chunk) and status.
|
87 |
+
preview = chunks[0][:500] if chunks else "No content"
|
88 |
+
return f"Indexed {len(chunks)} chunks.\n\n**Document Preview:**\n{preview}"
|
89 |
+
|
90 |
+
# ---------------------------
|
91 |
+
# Question Answering Function
|
92 |
+
# ---------------------------
|
93 |
+
def answer_question(query, top_k):
|
94 |
+
"""
|
95 |
+
Retrieves the top_k chunks most relevant to the query using the FAISS index,
|
96 |
+
builds a prompt with the retrieved context, and generates an answer using the Gemma model.
|
97 |
+
"""
|
98 |
+
index = state.get("faiss_index")
|
99 |
+
chunks = state.get("doc_chunks")
|
100 |
+
if index is None or len(chunks) == 0:
|
101 |
+
return "No document processed. Please upload a document first."
|
102 |
+
|
103 |
+
# Encode query using the same embedding model
|
104 |
+
query_vec = embed_model.encode([query], normalize_embeddings=True).astype('float32')
|
105 |
+
D, I = index.search(query_vec, top_k)
|
106 |
+
|
107 |
+
# Concatenate retrieved chunks as context
|
108 |
+
retrieved_text = ""
|
109 |
+
for idx in I[0]:
|
110 |
+
retrieved_text += chunks[idx] + "\n"
|
111 |
+
|
112 |
+
# Formulate the prompt for the generative model
|
113 |
+
prompt = f"Context:\n{retrieved_text}\nQuestion: {query}\nAnswer:"
|
114 |
+
|
115 |
+
# Tokenize and generate answer
|
116 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
117 |
+
output_ids = model.generate(input_ids, max_new_tokens=200, temperature=0.2)
|
118 |
+
answer = tokenizer.decode(output_ids[0][input_ids.size(1):], skip_special_tokens=True)
|
119 |
+
return answer.strip()
|
120 |
+
|
121 |
+
# ---------------------------
|
122 |
+
# Gradio Interface
|
123 |
+
# ---------------------------
|
124 |
+
with gr.Blocks(title="RAG System with Gemma‑3‑4B‑it") as demo:
|
125 |
+
gr.Markdown(
|
126 |
+
"""
|
127 |
+
# RAG System with Gemma‑3‑4B‑it
|
128 |
+
Upload a document (PDF or TXT) below. The system will extract text, split it into chunks,
|
129 |
+
build a vector index using FAISS, and then allow you to ask questions based on the document.
|
130 |
+
"""
|
131 |
+
)
|
132 |
+
|
133 |
+
with gr.Tab("Document Upload & Processing"):
|
134 |
+
with gr.Row():
|
135 |
+
file_input = gr.File(label="Upload Document (PDF or TXT)", file_count="single")
|
136 |
+
with gr.Row():
|
137 |
+
chunk_size_input = gr.Number(label="Chunk Size (characters)", value=1000, precision=0)
|
138 |
+
chunk_overlap_input = gr.Number(label="Chunk Overlap (characters)", value=100, precision=0)
|
139 |
+
process_btn = gr.Button("Process Document")
|
140 |
+
process_output = gr.Markdown()
|
141 |
+
|
142 |
+
with gr.Tab("Ask a Question"):
|
143 |
+
query_input = gr.Textbox(label="Enter your question", placeholder="Type your question here...")
|
144 |
+
top_k_input = gr.Number(label="Number of Chunks to Retrieve", value=3, precision=0)
|
145 |
+
answer_btn = gr.Button("Get Answer")
|
146 |
+
answer_output = gr.Markdown(label="Answer")
|
147 |
+
|
148 |
+
# Set up actions
|
149 |
+
process_btn.click(
|
150 |
+
fn=process_document,
|
151 |
+
inputs=[file_input, chunk_size_input, chunk_overlap_input],
|
152 |
+
outputs=process_output
|
153 |
+
)
|
154 |
+
answer_btn.click(
|
155 |
+
fn=answer_question,
|
156 |
+
inputs=[query_input, top_k_input],
|
157 |
+
outputs=answer_output
|
158 |
+
)
|
159 |
+
|
160 |
+
if __name__ == "__main__":
|
161 |
+
demo.launch()
|