Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
-
from transformers import AutoTokenizer,
|
|
|
|
|
5 |
import PyPDF2
|
6 |
import os
|
7 |
import time
|
@@ -13,12 +15,21 @@ logger = logging.getLogger(__name__)
|
|
13 |
|
14 |
# Load models
|
15 |
retriever_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
16 |
-
gen_tokenizer = AutoTokenizer.from_pretrained("
|
17 |
-
gen_model =
|
18 |
|
19 |
# Cache for document embeddings
|
20 |
embedding_cache = {}
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def extract_text_from_pdf(pdf_file):
|
23 |
"""Extract text from a PDF file, returning a list of page texts."""
|
24 |
pages = []
|
@@ -34,7 +45,7 @@ def extract_text_from_pdf(pdf_file):
|
|
34 |
pages.append(f"Error reading PDF: {str(e)}")
|
35 |
return pages
|
36 |
|
37 |
-
def chunk_text(text, chunk_size=
|
38 |
"""Split text into chunks of approximately chunk_size characters."""
|
39 |
words = text.split()
|
40 |
chunks = []
|
@@ -46,7 +57,7 @@ def chunk_text(text, chunk_size=1500):
|
|
46 |
current_chunk = []
|
47 |
current_length = 0
|
48 |
current_chunk.append(word)
|
49 |
-
current_length += len(word) + 1
|
50 |
if current_chunk:
|
51 |
chunks.append(" ".join(current_chunk))
|
52 |
return chunks
|
@@ -64,7 +75,7 @@ def get_document_embeddings(documents):
|
|
64 |
return torch.stack(embeddings)
|
65 |
|
66 |
def rag_pipeline(question, pdf_files):
|
67 |
-
"""
|
68 |
start_time = time.time()
|
69 |
documents = []
|
70 |
|
@@ -95,45 +106,51 @@ def rag_pipeline(question, pdf_files):
|
|
95 |
|
96 |
# Retrieve top 3 chunks using cosine similarity
|
97 |
cos_scores = util.pytorch_cos_sim(query_embedding, doc_embeddings)[0]
|
98 |
-
top_results = torch.topk(cos_scores, k=min(
|
99 |
retrieved_context = ""
|
100 |
for score, idx in zip(top_results.values, top_results.indices):
|
101 |
retrieved_context += f"- {documents[idx]} (score: {score:.2f})\n"
|
102 |
|
103 |
-
# Log retrieved context for debugging
|
104 |
logger.info(f"Retrieved context:\n{retrieved_context}")
|
105 |
|
106 |
-
#
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
113 |
)
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
)
|
|
|
|
|
|
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
outputs = gen_model.generate(**inputs, max_new_tokens=1500, num_beams=2)
|
124 |
-
answer = gen_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
125 |
-
|
126 |
-
# Log processing time
|
127 |
logger.info(f"Processing time: {time.time() - start_time:.2f} seconds")
|
128 |
-
return
|
129 |
|
130 |
# Gradio UI
|
131 |
with gr.Blocks() as demo:
|
132 |
-
gr.Markdown("#
|
133 |
gr.Markdown(
|
134 |
-
"Upload
|
135 |
-
"and get
|
136 |
-
"generator model (flan-t5-small). Designed for 2 vCPUs and 16GB RAM."
|
137 |
)
|
138 |
with gr.Row():
|
139 |
with gr.Column():
|
@@ -145,4 +162,4 @@ with gr.Blocks() as demo:
|
|
145 |
|
146 |
submit_button.click(fn=rag_pipeline, inputs=[question_input, pdf_input], outputs=response_output)
|
147 |
|
148 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from langchain.chains import LLMChain
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
import PyPDF2
|
8 |
import os
|
9 |
import time
|
|
|
15 |
|
16 |
# Load models
|
17 |
retriever_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
18 |
+
gen_tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
|
19 |
+
gen_model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1", torch_dtype=torch.float16)
|
20 |
|
21 |
# Cache for document embeddings
|
22 |
embedding_cache = {}
|
23 |
|
24 |
+
# LangChain wrapper for Phi-1
|
25 |
+
class Phi1LLM:
|
26 |
+
def __call__(self, prompt, **kwargs):
|
27 |
+
inputs = gen_tokenizer(prompt, return_tensors="pt")
|
28 |
+
outputs = gen_model.generate(**inputs, max_new_tokens=150, num_beams=2)
|
29 |
+
return gen_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
30 |
+
|
31 |
+
phi1_llm = Phi1LLM()
|
32 |
+
|
33 |
def extract_text_from_pdf(pdf_file):
|
34 |
"""Extract text from a PDF file, returning a list of page texts."""
|
35 |
pages = []
|
|
|
45 |
pages.append(f"Error reading PDF: {str(e)}")
|
46 |
return pages
|
47 |
|
48 |
+
def chunk_text(text, chunk_size=500):
|
49 |
"""Split text into chunks of approximately chunk_size characters."""
|
50 |
words = text.split()
|
51 |
chunks = []
|
|
|
57 |
current_chunk = []
|
58 |
current_length = 0
|
59 |
current_chunk.append(word)
|
60 |
+
current_length += len(word) + 1
|
61 |
if current_chunk:
|
62 |
chunks.append(" ".join(current_chunk))
|
63 |
return chunks
|
|
|
75 |
return torch.stack(embeddings)
|
76 |
|
77 |
def rag_pipeline(question, pdf_files):
|
78 |
+
"""RAG pipeline with multi-step thinking using Phi-1 and LangChain."""
|
79 |
start_time = time.time()
|
80 |
documents = []
|
81 |
|
|
|
106 |
|
107 |
# Retrieve top 3 chunks using cosine similarity
|
108 |
cos_scores = util.pytorch_cos_sim(query_embedding, doc_embeddings)[0]
|
109 |
+
top_results = torch.topk(cos_scores, k=min(3, len(documents)))
|
110 |
retrieved_context = ""
|
111 |
for score, idx in zip(top_results.values, top_results.indices):
|
112 |
retrieved_context += f"- {documents[idx]} (score: {score:.2f})\n"
|
113 |
|
|
|
114 |
logger.info(f"Retrieved context:\n{retrieved_context}")
|
115 |
|
116 |
+
# Step 1: Initial Answer
|
117 |
+
initial_prompt = PromptTemplate(
|
118 |
+
input_variables=["context", "question"],
|
119 |
+
template=(
|
120 |
+
"Using the following context, provide a concise answer to the question:\n\n"
|
121 |
+
"Context:\n{context}\n\n"
|
122 |
+
"Question: {question}\n\n"
|
123 |
+
"Answer:"
|
124 |
)
|
125 |
+
)
|
126 |
+
initial_chain = LLMChain(llm=phi1_llm, prompt=initial_prompt)
|
127 |
+
initial_answer = initial_chain.run(context=retrieved_context, question=question)
|
128 |
+
|
129 |
+
# Step 2: Refine Answer
|
130 |
+
refine_prompt = PromptTemplate(
|
131 |
+
input_variables=["context", "question", "initial_answer"],
|
132 |
+
template=(
|
133 |
+
"Given the context and initial answer, refine and improve the response to the question:\n\n"
|
134 |
+
"Context:\n{context}\n\n"
|
135 |
+
"Question: {question}\n\n"
|
136 |
+
"Initial Answer: {initial_answer}\n\n"
|
137 |
+
"Refined Answer:"
|
138 |
)
|
139 |
+
)
|
140 |
+
refine_chain = LLMChain(llm=phi1_llm, prompt=refine_prompt)
|
141 |
+
refined_answer = refine_chain.run(context=retrieved_context, question=question, initial_answer=initial_answer)
|
142 |
|
143 |
+
logger.info(f"Initial answer: {initial_answer}")
|
144 |
+
logger.info(f"Refined answer: {refined_answer}")
|
|
|
|
|
|
|
|
|
145 |
logger.info(f"Processing time: {time.time() - start_time:.2f} seconds")
|
146 |
+
return refined_answer if refined_answer else "Unable to generate a meaningful response."
|
147 |
|
148 |
# Gradio UI
|
149 |
with gr.Blocks() as demo:
|
150 |
+
gr.Markdown("# RAG Pipeline with microsoft/phi-1 and Multi-Step Thinking")
|
151 |
gr.Markdown(
|
152 |
+
"Upload PDFs (or use default AI/Data Science docs), ask a question, "
|
153 |
+
"and get refined answers using Phi-1 with multi-step reasoning on 2 vCPUs and 16GB RAM."
|
|
|
154 |
)
|
155 |
with gr.Row():
|
156 |
with gr.Column():
|
|
|
162 |
|
163 |
submit_button.click(fn=rag_pipeline, inputs=[question_input, pdf_input], outputs=response_output)
|
164 |
|
165 |
+
demo.launch(share=True, debug=True)
|