Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,6 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
-
from langchain.chains import LLMChain
|
6 |
-
from langchain.prompts import PromptTemplate
|
7 |
import PyPDF2
|
8 |
import os
|
9 |
import time
|
@@ -21,15 +19,6 @@ gen_model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1", torch_dtype=
|
|
21 |
# Cache for document embeddings
|
22 |
embedding_cache = {}
|
23 |
|
24 |
-
# LangChain wrapper for Phi-1
|
25 |
-
class Phi1LLM:
|
26 |
-
def __call__(self, prompt, **kwargs):
|
27 |
-
inputs = gen_tokenizer(prompt, return_tensors="pt")
|
28 |
-
outputs = gen_model.generate(**inputs, max_new_tokens=150, num_beams=2)
|
29 |
-
return gen_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
30 |
-
|
31 |
-
phi1_llm = Phi1LLM()
|
32 |
-
|
33 |
def extract_text_from_pdf(pdf_file):
|
34 |
"""Extract text from a PDF file, returning a list of page texts."""
|
35 |
pages = []
|
@@ -74,8 +63,14 @@ def get_document_embeddings(documents):
|
|
74 |
embeddings.append(emb)
|
75 |
return torch.stack(embeddings)
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
def rag_pipeline(question, pdf_files):
|
78 |
-
"""RAG pipeline with multi-step thinking using Phi-1
|
79 |
start_time = time.time()
|
80 |
documents = []
|
81 |
|
@@ -114,31 +109,23 @@ def rag_pipeline(question, pdf_files):
|
|
114 |
logger.info(f"Retrieved context:\n{retrieved_context}")
|
115 |
|
116 |
# Step 1: Initial Answer
|
117 |
-
initial_prompt =
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
"Question: {question}\n\n"
|
123 |
-
"Answer:"
|
124 |
-
)
|
125 |
)
|
126 |
-
|
127 |
-
initial_answer = initial_chain.run(context=retrieved_context, question=question)
|
128 |
|
129 |
# Step 2: Refine Answer
|
130 |
-
refine_prompt =
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
"Initial Answer: {initial_answer}\n\n"
|
137 |
-
"Refined Answer:"
|
138 |
-
)
|
139 |
)
|
140 |
-
|
141 |
-
refined_answer = refine_chain.run(context=retrieved_context, question=question, initial_answer=initial_answer)
|
142 |
|
143 |
logger.info(f"Initial answer: {initial_answer}")
|
144 |
logger.info(f"Refined answer: {refined_answer}")
|
@@ -162,4 +149,4 @@ with gr.Blocks() as demo:
|
|
162 |
|
163 |
submit_button.click(fn=rag_pipeline, inputs=[question_input, pdf_input], outputs=response_output)
|
164 |
|
165 |
-
demo.launch(
|
|
|
2 |
import torch
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
5 |
import PyPDF2
|
6 |
import os
|
7 |
import time
|
|
|
19 |
# Cache for document embeddings
|
20 |
embedding_cache = {}
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def extract_text_from_pdf(pdf_file):
|
23 |
"""Extract text from a PDF file, returning a list of page texts."""
|
24 |
pages = []
|
|
|
63 |
embeddings.append(emb)
|
64 |
return torch.stack(embeddings)
|
65 |
|
66 |
+
def generate_response(prompt):
|
67 |
+
"""Helper function to generate text with Phi-1."""
|
68 |
+
inputs = gen_tokenizer(prompt, return_tensors="pt")
|
69 |
+
outputs = gen_model.generate(**inputs, max_new_tokens=150, num_beams=2)
|
70 |
+
return gen_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
71 |
+
|
72 |
def rag_pipeline(question, pdf_files):
|
73 |
+
"""RAG pipeline with multi-step thinking using Phi-1."""
|
74 |
start_time = time.time()
|
75 |
documents = []
|
76 |
|
|
|
109 |
logger.info(f"Retrieved context:\n{retrieved_context}")
|
110 |
|
111 |
# Step 1: Initial Answer
|
112 |
+
initial_prompt = (
|
113 |
+
f"Using the following context, provide a concise answer to the question:\n\n"
|
114 |
+
f"Context:\n{retrieved_context}\n\n"
|
115 |
+
f"Question: {question}\n\n"
|
116 |
+
f"Answer:"
|
|
|
|
|
|
|
117 |
)
|
118 |
+
initial_answer = generate_response(initial_prompt)
|
|
|
119 |
|
120 |
# Step 2: Refine Answer
|
121 |
+
refine_prompt = (
|
122 |
+
f"Given the context and initial answer, refine and improve the response to the question:\n\n"
|
123 |
+
f"Context:\n{retrieved_context}\n\n"
|
124 |
+
f"Question: {question}\n\n"
|
125 |
+
f"Initial Answer: {initial_answer}\n\n"
|
126 |
+
f"Refined Answer:"
|
|
|
|
|
|
|
127 |
)
|
128 |
+
refined_answer = generate_response(refine_prompt)
|
|
|
129 |
|
130 |
logger.info(f"Initial answer: {initial_answer}")
|
131 |
logger.info(f"Refined answer: {refined_answer}")
|
|
|
149 |
|
150 |
submit_button.click(fn=rag_pipeline, inputs=[question_input, pdf_input], outputs=response_output)
|
151 |
|
152 |
+
demo.launch()
|