Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -52,7 +52,7 @@ def chunk_text(text, chunk_size=500):
|
|
52 |
return chunks
|
53 |
|
54 |
def get_document_embeddings(documents):
|
55 |
-
"""Compute embeddings for documents, using cache if available."""
|
56 |
embeddings = []
|
57 |
for doc in documents:
|
58 |
if doc in embedding_cache:
|
@@ -61,7 +61,8 @@ def get_document_embeddings(documents):
|
|
61 |
emb = retriever_model.encode(doc, convert_to_tensor=True)
|
62 |
embedding_cache[doc] = emb
|
63 |
embeddings.append(emb)
|
64 |
-
|
|
|
65 |
|
66 |
def rag_pipeline(question, pdf_files):
|
67 |
"""Optimized RAG pipeline with caching, chunking, and improved retrieval."""
|
@@ -130,4 +131,4 @@ with gr.Blocks() as demo:
|
|
130 |
|
131 |
submit_button.click(fn=rag_pipeline, inputs=[question_input, pdf_input], outputs=response_output)
|
132 |
|
133 |
-
demo.launch(
|
|
|
52 |
return chunks
|
53 |
|
54 |
def get_document_embeddings(documents):
|
55 |
+
"""Compute embeddings for documents, using cache if available, and return a stacked tensor."""
|
56 |
embeddings = []
|
57 |
for doc in documents:
|
58 |
if doc in embedding_cache:
|
|
|
61 |
emb = retriever_model.encode(doc, convert_to_tensor=True)
|
62 |
embedding_cache[doc] = emb
|
63 |
embeddings.append(emb)
|
64 |
+
# Stack the list of tensors into a single tensor of shape (n_docs, embedding_dim)
|
65 |
+
return torch.stack(embeddings)
|
66 |
|
67 |
def rag_pipeline(question, pdf_files):
|
68 |
"""Optimized RAG pipeline with caching, chunking, and improved retrieval."""
|
|
|
131 |
|
132 |
submit_button.click(fn=rag_pipeline, inputs=[question_input, pdf_input], outputs=response_output)
|
133 |
|
134 |
+
demo.launch(__debug__=True)
|