Rohit1412's picture
Update app.py
b96975d verified
raw
history blame
1.47 kB
import gradio as gr
from transformers import pipeline
# Load the models for image and video classification
#image_model = pipeline("image-classification", model="Rohit1412/Deepfake", device=0)
video_model = pipeline("video-classification", model="Rohit1412/deepfakerohit2.0")
def classify_input(input_data):
# Check if the input is an image or a video
if isinstance(input_data, str) and input_data.endswith(('.mp4', '.mov', '.avi')):
# Classify the uploaded video
predictions = video_model(input_data)
# Create a dictionary of labels and their corresponding scores
result = {pred["label"]: pred["score"] for pred in predictions}
return result
else:
# Classify the uploaded image
predictions = image_model(input_data)
return predictions[0]['label'], predictions[0]['score']
# Create Gradio interface
interface = gr.Interface(
fn=classify_input,
inputs=gr.inputs.Audio(source="upload", type="filepath", label="Upload Image or Video"),
outputs=[
gr.Label(num_top_classes=3, label="Predictions"),
gr.Textbox(label="Confidence", visible=False) # Hide confidence for video output
],
title="Image and Video Classification App",
description="Upload an image or a video to classify its content. Note: The model is still under training; it may give incorrect outputs."
)
# Launch the interface
if __name__ == "__main__":
interface.launch(debug=True)