File size: 7,352 Bytes
0964e01
be383f9
6d250b3
be383f9
 
 
 
ad63d32
cb88aea
f8e1542
 
ef1530a
abdc26c
 
ef1530a
ff14b75
 
 
 
0b2312f
0c04a17
cb88aea
be383f9
 
 
7e70d08
6d250b3
cb88aea
 
 
 
 
 
 
6d250b3
be383f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0964e01
cb88aea
f8e1542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb88aea
0964e01
 
 
 
 
 
 
 
 
 
 
 
 
cb88aea
 
 
 
 
 
 
 
 
 
be383f9
 
cb88aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be383f9
a68b44f
cb88aea
 
be383f9
 
 
 
 
 
 
 
 
 
f6a2f50
be383f9
 
 
 
 
 
 
 
 
 
 
cb88aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be383f9
 
 
 
 
 
 
 
 
 
f6a2f50
cb88aea
 
 
 
 
be383f9
 
 
 
 
 
 
76ac4e2
0964e01
76ac4e2
 
 
 
 
 
 
be383f9
 
 
 
 
 
 
cb88aea
be383f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e70d08
cb88aea
7e70d08
 
76ac4e2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import spaces
import argparse
import gradio as gr
import os
import torch
import trimesh
import sys
from pathlib import Path
import numpy as np
import json
from datetime import datetime

pathdir = Path(__file__).parent / 'cube'
sys.path.append(pathdir.as_posix())

# print(__file__)
# print(os.listdir())
# print(os.listdir('cube'))
# print(pathdir.as_posix())

from cube3d.inference.engine import EngineFast, Engine
from cube3d.inference.utils import normalize_bbox
from pathlib import Path
import uuid
import shutil
from huggingface_hub import snapshot_download

from cube3d.mesh_utils.postprocessing import (
    PYMESHLAB_AVAILABLE,
    create_pymeshset,
    postprocess_mesh,
    save_mesh,
)


GLOBAL_STATE = {}

def gen_save_folder(max_size=200):
    os.makedirs(GLOBAL_STATE["SAVE_DIR"], exist_ok=True)

    dirs = [f for f in Path(GLOBAL_STATE["SAVE_DIR"]).iterdir() if f.is_dir()]

    if len(dirs) >= max_size:
        oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime)
        shutil.rmtree(oldest_dir)
        print(f"Removed the oldest folder: {oldest_dir}")

    new_folder = os.path.join(GLOBAL_STATE["SAVE_DIR"], str(uuid.uuid4()))
    os.makedirs(new_folder, exist_ok=True)
    print(f"Created new folder: {new_folder}")

    return new_folder

@spaces.GPU
def handle_text_prompt(input_prompt, use_bbox = True, bbox_x=1.0, bbox_y=1.0, bbox_z=1.0, hi_res=False):
    # Create debug info
    debug_info = {
        "timestamp": datetime.now().isoformat(),
        "prompt": input_prompt,
        "use_bbox": use_bbox,
        "bbox_x": bbox_x,
        "bbox_y": bbox_y,
        "bbox_z": bbox_z,
        "hi_res": hi_res
    }
    
    # Save to persistent storage
    data_dir = "/data"
    os.makedirs(data_dir, exist_ok=True)
    
    prompt_file = os.path.join(data_dir, "prompt_log.jsonl")
    with open(prompt_file, "a") as f:
        f.write(json.dumps(debug_info) + "\n")
    
    print(f"prompt: {input_prompt}, use_bbox: {use_bbox}, bbox_x: {bbox_x}, bbox_y: {bbox_y}, bbox_z: {bbox_z}, hi_res: {hi_res}")

    if "engine_fast" not in GLOBAL_STATE: 
        config_path = GLOBAL_STATE["config_path"]
        gpt_ckpt_path = "./model_weights/shape_gpt.safetensors"
        shape_ckpt_path = "./model_weights/shape_tokenizer.safetensors"
        engine_fast = EngineFast(
            config_path,
            gpt_ckpt_path, 
            shape_ckpt_path,
            device=torch.device("cuda"),
        )
        GLOBAL_STATE["engine_fast"] = engine_fast

    # Determine bounding box size based on option
    bbox_size = None
    if use_bbox:
        bbox_size = [bbox_x, bbox_y, bbox_z]
    # For "No Bounding Box", bbox_size remains None
    
    normalized_bbox = normalize_bbox(bbox_size) if bbox_size is not None else None

    resolution_base = 9.0 if hi_res else 8.0
    mesh_v_f = GLOBAL_STATE["engine_fast"].t2s([input_prompt], use_kv_cache=True, resolution_base=resolution_base, bounding_box_xyz=normalized_bbox)
    # save output
    vertices, faces = mesh_v_f[0][0], mesh_v_f[0][1]

    ms = create_pymeshset(vertices, faces)
    target_face_num = max(10000, int(faces.shape[0] * 0.1))
    print(f"Postprocessing mesh to {target_face_num} faces")
    postprocess_mesh(ms, target_face_num)
    mesh = ms.current_mesh()
    vertices = mesh.vertex_matrix()
    faces = mesh.face_matrix()

    min_extents = np.min(mesh.vertex_matrix(), axis = 0)
    max_extents = np.max(mesh.vertex_matrix(), axis = 0)

    mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
    scene = trimesh.scene.Scene()
    scene.add_geometry(mesh)

    save_folder = gen_save_folder()
    output_path = os.path.join(save_folder, "output.glb")
    # trimesh.Trimesh(vertices=vertices, faces=faces).export(output_path)
    scene.export(output_path)
    return output_path

def build_interface():
    """Build UI for gradio app
    """
    title = "Cube 3D"
    with gr.Blocks(theme=gr.themes.Soft(), title=title, fill_width=True) as interface:
        gr.Markdown(
            f"""
            # {title}
            # Check out our [Github](https://github.com/Roblox/cube) to try it on your own machine!
            """
        )

        with gr.Row():
            with gr.Column(scale=2):
                with gr.Group():
                    input_text_box = gr.Textbox(
                        value=None,
                        label="Prompt",
                        lines=2,
                    )

                    use_bbox = gr.Checkbox(label="Use Bbox", value=False)

                    with gr.Group() as bbox_group:
                        bbox_x = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Length", interactive=False)
                        bbox_y = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Height", interactive=False)
                        bbox_z = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Depth", interactive=False)

                    # Enable/disable bbox sliders based on use_bbox checkbox
                    def toggle_bbox_interactivity(use_bbox):
                        return (
                            gr.Slider(interactive=use_bbox),
                            gr.Slider(interactive=use_bbox),
                            gr.Slider(interactive=use_bbox)
                        )
                    use_bbox.change(
                        toggle_bbox_interactivity,
                        inputs=[use_bbox],
                        outputs=[bbox_x, bbox_y, bbox_z]
                    )
                    
                    hi_res = gr.Checkbox(label="Hi-Res", value=False)
                with gr.Row():
                    submit_button = gr.Button("Submit", variant="primary")
            with gr.Column(scale=3):
                model3d = gr.Model3D(
                    label="Output", height="45em", interactive=False
                )
    
        submit_button.click(
            handle_text_prompt,
            inputs=[
                input_text_box,
                use_bbox,
                bbox_x,
                bbox_y,
                bbox_z,
                hi_res
            ],
            outputs=[
                model3d
            ]
        )
                
    return interface
def generate(args):
    GLOBAL_STATE["config_path"] = args.config_path
    GLOBAL_STATE["SAVE_DIR"] = args.save_dir
    os.makedirs(GLOBAL_STATE["SAVE_DIR"], exist_ok=True)

    demo = build_interface()
    demo.queue(default_concurrency_limit=1)
    demo.launch()

if __name__=="__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--config_path",
        type=str,
        help="Path to the config file",
        default="cube/cube3d/configs/open_model_v0.5.yaml",
    )
    parser.add_argument(
        "--gpt_ckpt_path",
        type=str,
        help="Path to the gpt ckpt path",
        default="model_weights/shape_gpt.safetensors",
    )
    parser.add_argument(
        "--shape_ckpt_path",
        type=str,
        help="Path to the shape ckpt path",
        default="model_weights/shape_tokenizer.safetensors",
    )
    parser.add_argument(
        "--save_dir",
        type=str,
        default="gradio_save_dir",
    )

    args = parser.parse_args()
    snapshot_download(
        repo_id="Roblox/cube3d-v0.5",
        local_dir="./model_weights"
    )
    generate(args)