Spaces:
Paused
Paused
Robledo Gularte Gonçalves
commited on
Commit
·
f292ce3
1
Parent(s):
69ff606
back to old front
Browse files- app-new-front.py +1124 -0
- app-old-front.py +454 -0
- app.py +46 -716
app-new-front.py
ADDED
@@ -0,0 +1,1124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
import trimesh
|
8 |
+
import random
|
9 |
+
from transformers import AutoModelForImageSegmentation
|
10 |
+
from torchvision import transforms
|
11 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
12 |
+
import subprocess
|
13 |
+
import shutil
|
14 |
+
|
15 |
+
# install others
|
16 |
+
subprocess.run("pip install spandrel==0.4.1 --no-deps", shell=True, check=True)
|
17 |
+
|
18 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
DTYPE = torch.float16
|
20 |
+
|
21 |
+
print("DEVICE: ", DEVICE)
|
22 |
+
print("CUDA DEVICE NAME: ", torch.cuda.get_device_name(torch.cuda.current_device()))
|
23 |
+
|
24 |
+
DEFAULT_FACE_NUMBER = 100000
|
25 |
+
MAX_SEED = np.iinfo(np.int32).max
|
26 |
+
TRIPOSG_REPO_URL = "https://github.com/VAST-AI-Research/TripoSG.git"
|
27 |
+
MV_ADAPTER_REPO_URL = "https://github.com/huanngzh/MV-Adapter.git"
|
28 |
+
|
29 |
+
RMBG_PRETRAINED_MODEL = "checkpoints/RMBG-1.4"
|
30 |
+
TRIPOSG_PRETRAINED_MODEL = "checkpoints/TripoSG"
|
31 |
+
|
32 |
+
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
|
33 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
34 |
+
|
35 |
+
TRIPOSG_CODE_DIR = "./triposg"
|
36 |
+
if not os.path.exists(TRIPOSG_CODE_DIR):
|
37 |
+
os.system(f"git clone {TRIPOSG_REPO_URL} {TRIPOSG_CODE_DIR}")
|
38 |
+
|
39 |
+
MV_ADAPTER_CODE_DIR = "./mv_adapter"
|
40 |
+
if not os.path.exists(MV_ADAPTER_CODE_DIR):
|
41 |
+
os.system(f"git clone {MV_ADAPTER_REPO_URL} {MV_ADAPTER_CODE_DIR} && cd {MV_ADAPTER_CODE_DIR} && git checkout 7d37a97e9bc223cdb8fd26a76bd8dd46504c7c3d")
|
42 |
+
|
43 |
+
import sys
|
44 |
+
sys.path.append(TRIPOSG_CODE_DIR)
|
45 |
+
sys.path.append(os.path.join(TRIPOSG_CODE_DIR, "scripts"))
|
46 |
+
sys.path.append(MV_ADAPTER_CODE_DIR)
|
47 |
+
sys.path.append(os.path.join(MV_ADAPTER_CODE_DIR, "scripts"))
|
48 |
+
|
49 |
+
# Custom styling constants
|
50 |
+
NESTLE_BLUE = "#0066b1"
|
51 |
+
NESTLE_BLUE_DARK = "#004a82"
|
52 |
+
ACCENT_COLOR = "#10b981"
|
53 |
+
|
54 |
+
# # triposg
|
55 |
+
from image_process import prepare_image
|
56 |
+
from briarmbg import BriaRMBG
|
57 |
+
snapshot_download("briaai/RMBG-1.4", local_dir=RMBG_PRETRAINED_MODEL)
|
58 |
+
rmbg_net = BriaRMBG.from_pretrained(RMBG_PRETRAINED_MODEL).to(DEVICE)
|
59 |
+
rmbg_net.eval()
|
60 |
+
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
61 |
+
snapshot_download("VAST-AI/TripoSG", local_dir=TRIPOSG_PRETRAINED_MODEL)
|
62 |
+
triposg_pipe = TripoSGPipeline.from_pretrained(TRIPOSG_PRETRAINED_MODEL).to(DEVICE, DTYPE)
|
63 |
+
|
64 |
+
# mv adapter
|
65 |
+
NUM_VIEWS = 6
|
66 |
+
from inference_ig2mv_sdxl import prepare_pipeline, preprocess_image, remove_bg
|
67 |
+
from mvadapter.utils import get_orthogonal_camera, tensor_to_image, make_image_grid
|
68 |
+
from mvadapter.utils.render import NVDiffRastContextWrapper, load_mesh, render
|
69 |
+
mv_adapter_pipe = prepare_pipeline(
|
70 |
+
base_model="stabilityai/stable-diffusion-xl-base-1.0",
|
71 |
+
vae_model="madebyollin/sdxl-vae-fp16-fix",
|
72 |
+
unet_model=None,
|
73 |
+
lora_model=None,
|
74 |
+
adapter_path="huanngzh/mv-adapter",
|
75 |
+
scheduler=None,
|
76 |
+
num_views=NUM_VIEWS,
|
77 |
+
device=DEVICE,
|
78 |
+
dtype=torch.float16,
|
79 |
+
)
|
80 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
81 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
82 |
+
)
|
83 |
+
birefnet.to(DEVICE)
|
84 |
+
transform_image = transforms.Compose(
|
85 |
+
[
|
86 |
+
transforms.Resize((1024, 1024)),
|
87 |
+
transforms.ToTensor(),
|
88 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
89 |
+
]
|
90 |
+
)
|
91 |
+
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, DEVICE)
|
92 |
+
|
93 |
+
if not os.path.exists("checkpoints/RealESRGAN_x2plus.pth"):
|
94 |
+
hf_hub_download("dtarnow/UPscaler", filename="RealESRGAN_x2plus.pth", local_dir="checkpoints")
|
95 |
+
if not os.path.exists("checkpoints/big-lama.pt"):
|
96 |
+
subprocess.run("wget -P checkpoints/ https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt", shell=True, check=True)
|
97 |
+
|
98 |
+
def start_session(req: gr.Request):
|
99 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
100 |
+
os.makedirs(save_dir, exist_ok=True)
|
101 |
+
print("start session, mkdir", save_dir)
|
102 |
+
|
103 |
+
def end_session(req: gr.Request):
|
104 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
105 |
+
shutil.rmtree(save_dir)
|
106 |
+
|
107 |
+
def get_random_hex():
|
108 |
+
random_bytes = os.urandom(8)
|
109 |
+
random_hex = random_bytes.hex()
|
110 |
+
return random_hex
|
111 |
+
|
112 |
+
def get_random_seed(randomize_seed, seed):
|
113 |
+
if randomize_seed:
|
114 |
+
seed = random.randint(0, MAX_SEED)
|
115 |
+
return seed
|
116 |
+
|
117 |
+
@spaces.GPU(duration=180)
|
118 |
+
def run_full(image: str, req: gr.Request):
|
119 |
+
seed = 0
|
120 |
+
num_inference_steps = 50
|
121 |
+
guidance_scale = 7.5
|
122 |
+
simplify = True
|
123 |
+
target_face_num = DEFAULT_FACE_NUMBER
|
124 |
+
|
125 |
+
image_seg = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
126 |
+
|
127 |
+
outputs = triposg_pipe(
|
128 |
+
image=image_seg,
|
129 |
+
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
|
130 |
+
num_inference_steps=num_inference_steps,
|
131 |
+
guidance_scale=guidance_scale
|
132 |
+
).samples[0]
|
133 |
+
print("mesh extraction done")
|
134 |
+
mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))
|
135 |
+
|
136 |
+
if simplify:
|
137 |
+
print("start simplify")
|
138 |
+
from utils import simplify_mesh
|
139 |
+
mesh = simplify_mesh(mesh, target_face_num)
|
140 |
+
|
141 |
+
save_dir = os.path.join(TMP_DIR, "examples")
|
142 |
+
os.makedirs(save_dir, exist_ok=True)
|
143 |
+
mesh_path = os.path.join(save_dir, f"triposg_{get_random_hex()}.glb")
|
144 |
+
mesh.export(mesh_path)
|
145 |
+
print("save to ", mesh_path)
|
146 |
+
|
147 |
+
torch.cuda.empty_cache()
|
148 |
+
|
149 |
+
height, width = 768, 768
|
150 |
+
# Prepare cameras
|
151 |
+
cameras = get_orthogonal_camera(
|
152 |
+
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
153 |
+
distance=[1.8] * NUM_VIEWS,
|
154 |
+
left=-0.55,
|
155 |
+
right=0.55,
|
156 |
+
bottom=-0.55,
|
157 |
+
top=0.55,
|
158 |
+
azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
159 |
+
device=DEVICE,
|
160 |
+
)
|
161 |
+
ctx = NVDiffRastContextWrapper(device=DEVICE, context_type="cuda")
|
162 |
+
|
163 |
+
mesh = load_mesh(mesh_path, rescale=True, device=DEVICE)
|
164 |
+
render_out = render(
|
165 |
+
ctx,
|
166 |
+
mesh,
|
167 |
+
cameras,
|
168 |
+
height=height,
|
169 |
+
width=width,
|
170 |
+
render_attr=False,
|
171 |
+
normal_background=0.0,
|
172 |
+
)
|
173 |
+
control_images = (
|
174 |
+
torch.cat(
|
175 |
+
[
|
176 |
+
(render_out.pos + 0.5).clamp(0, 1),
|
177 |
+
(render_out.normal / 2 + 0.5).clamp(0, 1),
|
178 |
+
],
|
179 |
+
dim=-1,
|
180 |
+
)
|
181 |
+
.permute(0, 3, 1, 2)
|
182 |
+
.to(DEVICE)
|
183 |
+
)
|
184 |
+
|
185 |
+
image = Image.open(image)
|
186 |
+
image = remove_bg_fn(image)
|
187 |
+
image = preprocess_image(image, height, width)
|
188 |
+
|
189 |
+
pipe_kwargs = {}
|
190 |
+
if seed != -1 and isinstance(seed, int):
|
191 |
+
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
192 |
+
|
193 |
+
images = mv_adapter_pipe(
|
194 |
+
"high quality",
|
195 |
+
height=height,
|
196 |
+
width=width,
|
197 |
+
num_inference_steps=15,
|
198 |
+
guidance_scale=3.0,
|
199 |
+
num_images_per_prompt=NUM_VIEWS,
|
200 |
+
control_image=control_images,
|
201 |
+
control_conditioning_scale=1.0,
|
202 |
+
reference_image=image,
|
203 |
+
reference_conditioning_scale=1.0,
|
204 |
+
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
|
205 |
+
cross_attention_kwargs={"scale": 1.0},
|
206 |
+
**pipe_kwargs,
|
207 |
+
).images
|
208 |
+
|
209 |
+
torch.cuda.empty_cache()
|
210 |
+
|
211 |
+
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
212 |
+
make_image_grid(images, rows=1).save(mv_image_path)
|
213 |
+
|
214 |
+
from texture import TexturePipeline, ModProcessConfig
|
215 |
+
texture_pipe = TexturePipeline(
|
216 |
+
upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
|
217 |
+
inpaint_ckpt_path="checkpoints/big-lama.pt",
|
218 |
+
device=DEVICE,
|
219 |
+
)
|
220 |
+
|
221 |
+
textured_glb_path = texture_pipe(
|
222 |
+
mesh_path=mesh_path,
|
223 |
+
save_dir=save_dir,
|
224 |
+
save_name=f"texture_mesh_{get_random_hex()}.glb",
|
225 |
+
uv_unwarp=True,
|
226 |
+
uv_size=4096,
|
227 |
+
rgb_path=mv_image_path,
|
228 |
+
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
229 |
+
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
230 |
+
)
|
231 |
+
|
232 |
+
return image_seg, mesh_path, textured_glb_path
|
233 |
+
|
234 |
+
|
235 |
+
@spaces.GPU()
|
236 |
+
@torch.no_grad()
|
237 |
+
def run_segmentation(image: str):
|
238 |
+
print("run_segmentation pre image str path: ", image)
|
239 |
+
image = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
240 |
+
print("run_segmentation pos image: ", image)
|
241 |
+
return image
|
242 |
+
|
243 |
+
@spaces.GPU(duration=90)
|
244 |
+
@torch.no_grad()
|
245 |
+
def image_to_3d(
|
246 |
+
image: Image.Image,
|
247 |
+
seed: int,
|
248 |
+
num_inference_steps: int,
|
249 |
+
guidance_scale: float,
|
250 |
+
simplify: bool,
|
251 |
+
target_face_num: int,
|
252 |
+
req: gr.Request
|
253 |
+
):
|
254 |
+
outputs = triposg_pipe(
|
255 |
+
image=image,
|
256 |
+
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
|
257 |
+
num_inference_steps=num_inference_steps,
|
258 |
+
guidance_scale=guidance_scale
|
259 |
+
).samples[0]
|
260 |
+
print("mesh extraction done")
|
261 |
+
mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))
|
262 |
+
|
263 |
+
if simplify:
|
264 |
+
print("start simplify")
|
265 |
+
from utils import simplify_mesh
|
266 |
+
mesh = simplify_mesh(mesh, target_face_num)
|
267 |
+
|
268 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
269 |
+
mesh_path = os.path.join(save_dir, f"triposg_{get_random_hex()}.glb")
|
270 |
+
mesh.export(mesh_path)
|
271 |
+
print("save to ", mesh_path)
|
272 |
+
|
273 |
+
torch.cuda.empty_cache()
|
274 |
+
|
275 |
+
return mesh_path
|
276 |
+
|
277 |
+
@spaces.GPU(duration=120)
|
278 |
+
@torch.no_grad()
|
279 |
+
def run_texture(image: Image, mesh_path: str, seed: int, text_prompt: str, req: gr.Request):
|
280 |
+
height, width = 768, 768
|
281 |
+
# Prepare cameras
|
282 |
+
cameras = get_orthogonal_camera(
|
283 |
+
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
284 |
+
distance=[1.8] * NUM_VIEWS,
|
285 |
+
left=-0.55,
|
286 |
+
right=0.55,
|
287 |
+
bottom=-0.55,
|
288 |
+
top=0.55,
|
289 |
+
azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
290 |
+
device=DEVICE,
|
291 |
+
)
|
292 |
+
ctx = NVDiffRastContextWrapper(device=DEVICE, context_type="cuda")
|
293 |
+
|
294 |
+
mesh = load_mesh(mesh_path, rescale=True, device=DEVICE)
|
295 |
+
render_out = render(
|
296 |
+
ctx,
|
297 |
+
mesh,
|
298 |
+
cameras,
|
299 |
+
height=height,
|
300 |
+
width=width,
|
301 |
+
render_attr=False,
|
302 |
+
normal_background=0.0,
|
303 |
+
)
|
304 |
+
control_images = (
|
305 |
+
torch.cat(
|
306 |
+
[
|
307 |
+
(render_out.pos + 0.5).clamp(0, 1),
|
308 |
+
(render_out.normal / 2 + 0.5).clamp(0, 1),
|
309 |
+
],
|
310 |
+
dim=-1,
|
311 |
+
)
|
312 |
+
.permute(0, 3, 1, 2)
|
313 |
+
.to(DEVICE)
|
314 |
+
)
|
315 |
+
|
316 |
+
image = Image.open(image)
|
317 |
+
image = remove_bg_fn(image)
|
318 |
+
image = preprocess_image(image, height, width)
|
319 |
+
|
320 |
+
pipe_kwargs = {}
|
321 |
+
if seed != -1 and isinstance(seed, int):
|
322 |
+
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
323 |
+
|
324 |
+
images = mv_adapter_pipe(
|
325 |
+
text_prompt,
|
326 |
+
height=height,
|
327 |
+
width=width,
|
328 |
+
num_inference_steps=15,
|
329 |
+
guidance_scale=3.0,
|
330 |
+
num_images_per_prompt=NUM_VIEWS,
|
331 |
+
control_image=control_images,
|
332 |
+
control_conditioning_scale=1.0,
|
333 |
+
reference_image=image,
|
334 |
+
reference_conditioning_scale=1.0,
|
335 |
+
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
|
336 |
+
cross_attention_kwargs={"scale": 1.0},
|
337 |
+
**pipe_kwargs,
|
338 |
+
).images
|
339 |
+
|
340 |
+
torch.cuda.empty_cache()
|
341 |
+
|
342 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
343 |
+
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
344 |
+
make_image_grid(images, rows=1).save(mv_image_path)
|
345 |
+
|
346 |
+
from texture import TexturePipeline, ModProcessConfig
|
347 |
+
texture_pipe = TexturePipeline(
|
348 |
+
upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
|
349 |
+
inpaint_ckpt_path="checkpoints/big-lama.pt",
|
350 |
+
device=DEVICE,
|
351 |
+
)
|
352 |
+
|
353 |
+
textured_glb_path = texture_pipe(
|
354 |
+
mesh_path=mesh_path,
|
355 |
+
save_dir=save_dir,
|
356 |
+
save_name=f"texture_mesh_{get_random_hex()}.glb",
|
357 |
+
uv_unwarp=True,
|
358 |
+
uv_size=4096,
|
359 |
+
rgb_path=mv_image_path,
|
360 |
+
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
361 |
+
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
362 |
+
)
|
363 |
+
|
364 |
+
return textured_glb_path
|
365 |
+
|
366 |
+
# Custom UI components
|
367 |
+
def create_header():
|
368 |
+
return f"""
|
369 |
+
<div class="card" style="background: linear-gradient(135deg, {NESTLE_BLUE} 0%, {NESTLE_BLUE_DARK} 100%); color: white; border: none;">
|
370 |
+
<div style="display: flex; align-items: center; gap: 20px;">
|
371 |
+
<div style="background: white; padding: 12px; border-radius: 12px; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);">
|
372 |
+
<img src="https://logodownload.org/wp-content/uploads/2016/11/nestle-logo-1.png"
|
373 |
+
alt="Nestlé Logo" style="height: 48px; width: auto;">
|
374 |
+
</div>
|
375 |
+
<div style="flex: 1;">
|
376 |
+
<h1 style="margin: 0; font-size: 2.5rem; font-weight: 700; letter-spacing: -0.025em;">
|
377 |
+
Nestlé 3D Generator
|
378 |
+
</h1>
|
379 |
+
<p style="margin: 0.5rem 0 0 0; opacity: 0.9; font-size: 1.1rem;">
|
380 |
+
Transform your product images into stunning 3D models with AI
|
381 |
+
</p>
|
382 |
+
</div>
|
383 |
+
<div class="badge primary">Beta v2.0</div>
|
384 |
+
</div>
|
385 |
+
</div>
|
386 |
+
"""
|
387 |
+
|
388 |
+
def create_tabs():
|
389 |
+
return """
|
390 |
+
<div class="tabs-container">
|
391 |
+
<div class="tabs-list">
|
392 |
+
<button class="tab-button active" onclick="switchTab('segmentation')">
|
393 |
+
🔍 Segmentation
|
394 |
+
</button>
|
395 |
+
<button class="tab-button" onclick="switchTab('model')">
|
396 |
+
🎨 3D Model
|
397 |
+
</button>
|
398 |
+
<button class="tab-button" onclick="switchTab('textured')">
|
399 |
+
✨ Textured Model
|
400 |
+
</button>
|
401 |
+
</div>
|
402 |
+
|
403 |
+
<div id="segmentation-tab" class="tab-content active">
|
404 |
+
<div style="text-align: center; color: #1e293b;">
|
405 |
+
<div style="font-size: 4rem; margin-bottom: 1rem;">📤</div>
|
406 |
+
<p>Upload an image to see segmentation results</p>
|
407 |
+
</div>
|
408 |
+
</div>
|
409 |
+
|
410 |
+
<div id="model-tab" class="tab-content">
|
411 |
+
<div style="text-align: center; color: #1e293b;">
|
412 |
+
<div style="font-size: 4rem; margin-bottom: 1rem;">🎯</div>
|
413 |
+
<p>3D model will appear here after generation</p>
|
414 |
+
</div>
|
415 |
+
</div>
|
416 |
+
|
417 |
+
<div id="textured-tab" class="tab-content">
|
418 |
+
<div style="text-align: center; color: #1e293b;">
|
419 |
+
<div style="font-size: 4rem; margin-bottom: 1rem;">🎨</div>
|
420 |
+
<p>Textured model will appear here</p>
|
421 |
+
</div>
|
422 |
+
</div>
|
423 |
+
</div>
|
424 |
+
"""
|
425 |
+
|
426 |
+
def create_progress_bar():
|
427 |
+
return """
|
428 |
+
<div class="progress-container" style="display: none;" id="progress-container">
|
429 |
+
<div class="progress-header">
|
430 |
+
<span>Generating 3D model...</span>
|
431 |
+
<span id="progress-text">0%</span>
|
432 |
+
</div>
|
433 |
+
<div class="progress-bar-container">
|
434 |
+
<div class="progress-bar" id="progress-bar"></div>
|
435 |
+
</div>
|
436 |
+
</div>
|
437 |
+
"""
|
438 |
+
|
439 |
+
# JavaScript
|
440 |
+
ADVANCED_JS = """
|
441 |
+
<script>
|
442 |
+
// React-like state management simulation
|
443 |
+
window.appState = {
|
444 |
+
currentTab: 'segmentation',
|
445 |
+
isGenerating: false,
|
446 |
+
progress: 0
|
447 |
+
};
|
448 |
+
|
449 |
+
// Tab switching functionality
|
450 |
+
function switchTab(tabName) {
|
451 |
+
window.appState.currentTab = tabName;
|
452 |
+
|
453 |
+
// Hide all tab contents
|
454 |
+
document.querySelectorAll('.tab-content').forEach(el => {
|
455 |
+
el.style.display = 'none';
|
456 |
+
});
|
457 |
+
|
458 |
+
// Show selected tab
|
459 |
+
const selectedTab = document.getElementById(tabName + '-tab');
|
460 |
+
if (selectedTab) {
|
461 |
+
selectedTab.style.display = 'block';
|
462 |
+
}
|
463 |
+
|
464 |
+
// Update tab buttons
|
465 |
+
document.querySelectorAll('.tab-button').forEach(btn => {
|
466 |
+
btn.classList.remove('active');
|
467 |
+
});
|
468 |
+
|
469 |
+
const activeBtn = document.querySelector(`[onclick="switchTab('${tabName}')"]`);
|
470 |
+
if (activeBtn) {
|
471 |
+
activeBtn.classList.add('active');
|
472 |
+
}
|
473 |
+
}
|
474 |
+
|
475 |
+
// Progress simulation
|
476 |
+
function simulateProgress() {
|
477 |
+
window.appState.isGenerating = true;
|
478 |
+
window.appState.progress = 0;
|
479 |
+
|
480 |
+
const progressBar = document.getElementById('progress-bar');
|
481 |
+
const progressText = document.getElementById('progress-text');
|
482 |
+
|
483 |
+
const interval = setInterval(() => {
|
484 |
+
window.appState.progress += 10;
|
485 |
+
|
486 |
+
if (progressBar) {
|
487 |
+
progressBar.style.width = window.appState.progress + '%';
|
488 |
+
}
|
489 |
+
|
490 |
+
if (progressText) {
|
491 |
+
progressText.textContent = window.appState.progress + '%';
|
492 |
+
}
|
493 |
+
|
494 |
+
if (window.appState.progress >= 100) {
|
495 |
+
clearInterval(interval);
|
496 |
+
window.appState.isGenerating = false;
|
497 |
+
}
|
498 |
+
}, 300);
|
499 |
+
}
|
500 |
+
|
501 |
+
// Drag and drop simulation
|
502 |
+
function setupDragDrop() {
|
503 |
+
const uploadArea = document.querySelector('.upload-area');
|
504 |
+
if (uploadArea) {
|
505 |
+
uploadArea.addEventListener('dragover', (e) => {
|
506 |
+
e.preventDefault();
|
507 |
+
uploadArea.classList.add('drag-over');
|
508 |
+
});
|
509 |
+
|
510 |
+
uploadArea.addEventListener('dragleave', () => {
|
511 |
+
uploadArea.classList.remove('drag-over');
|
512 |
+
});
|
513 |
+
|
514 |
+
uploadArea.addEventListener('drop', (e) => {
|
515 |
+
e.preventDefault();
|
516 |
+
uploadArea.classList.remove('drag-over');
|
517 |
+
// Handle file drop
|
518 |
+
});
|
519 |
+
}
|
520 |
+
}
|
521 |
+
|
522 |
+
// Initialize when DOM is ready
|
523 |
+
document.addEventListener('DOMContentLoaded', function() {
|
524 |
+
setupDragDrop();
|
525 |
+
switchTab('segmentation');
|
526 |
+
});
|
527 |
+
</script>
|
528 |
+
"""
|
529 |
+
|
530 |
+
# CSS
|
531 |
+
ADVANCED_CSS = f"""
|
532 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
533 |
+
|
534 |
+
:root {{
|
535 |
+
--nestle-blue: {NESTLE_BLUE};
|
536 |
+
--nestle-blue-dark: {NESTLE_BLUE_DARK};
|
537 |
+
--accent: {ACCENT_COLOR};
|
538 |
+
--shadow-sm: 0 1px 3px rgba(0, 0, 0, 0.1);
|
539 |
+
--shadow-md: 0 4px 12px rgba(0, 0, 0, 0.1);
|
540 |
+
--shadow-lg: 0 10px 25px rgba(0, 0, 0, 0.1);
|
541 |
+
--border-radius: 12px;
|
542 |
+
}}
|
543 |
+
|
544 |
+
* {{
|
545 |
+
font-family: 'Inter', sans-serif !important;
|
546 |
+
}}
|
547 |
+
|
548 |
+
body, .gradio-container {{
|
549 |
+
background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%) !important;
|
550 |
+
margin: 0 !important;
|
551 |
+
padding: 0 !important;
|
552 |
+
min-height: 100vh !important;
|
553 |
+
color: #ffffff !important;
|
554 |
+
font-size: 1rem !important;
|
555 |
+
}}
|
556 |
+
|
557 |
+
/* AGGRESSIVE TEXT COLOR FIXES - Higher specificity */
|
558 |
+
.gradio-container *,
|
559 |
+
.gradio-container div,
|
560 |
+
.gradio-container span,
|
561 |
+
.gradio-container p,
|
562 |
+
.gradio-container label,
|
563 |
+
.gradio-container h1,
|
564 |
+
.gradio-container h2,
|
565 |
+
.gradio-container h3,
|
566 |
+
.gradio-container h4,
|
567 |
+
.gradio-container h5,
|
568 |
+
.gradio-container h6 {{
|
569 |
+
color: #ffffff !important;
|
570 |
+
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.8) !important;
|
571 |
+
}}
|
572 |
+
|
573 |
+
/* Force white text on all Gradio components */
|
574 |
+
.gr-group *,
|
575 |
+
.gr-form *,
|
576 |
+
.gr-block *,
|
577 |
+
.gr-box *,
|
578 |
+
div[class*="gr-"] *,
|
579 |
+
div[class*="svelte-"] *,
|
580 |
+
span[class*="svelte-"] *,
|
581 |
+
label[class*="svelte-"] *,
|
582 |
+
p[class*="svelte-"] * {{
|
583 |
+
color: #ffffff !important;
|
584 |
+
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.8) !important;
|
585 |
+
font-weight: 600 !important;
|
586 |
+
}}
|
587 |
+
|
588 |
+
/* Specific targeting for card descriptions and titles */
|
589 |
+
.card-description,
|
590 |
+
.card-title,
|
591 |
+
div.card-description,
|
592 |
+
div.card-title,
|
593 |
+
p.card-description,
|
594 |
+
h3.card-title {{
|
595 |
+
color: #ffffff !important;
|
596 |
+
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.8) !important;
|
597 |
+
font-weight: 700 !important;
|
598 |
+
background: rgba(0, 0, 0, 0.3) !important;
|
599 |
+
padding: 4px 8px !important;
|
600 |
+
border-radius: 6px !important;
|
601 |
+
margin: 0.5rem 0 !important;
|
602 |
+
display: inline-block !important;
|
603 |
+
}}
|
604 |
+
|
605 |
+
/* Card Components */
|
606 |
+
.card {{
|
607 |
+
background: white;
|
608 |
+
border: 1px solid #e2e8f0;
|
609 |
+
border-radius: var(--border-radius);
|
610 |
+
box-shadow: var(--shadow-md);
|
611 |
+
padding: 1.5rem;
|
612 |
+
transition: all 0.2s ease;
|
613 |
+
margin-bottom: 1rem;
|
614 |
+
}}
|
615 |
+
|
616 |
+
.card:hover {{
|
617 |
+
box-shadow: var(--shadow-lg);
|
618 |
+
transform: translateY(-2px);
|
619 |
+
}}
|
620 |
+
|
621 |
+
.card-header {{
|
622 |
+
margin-bottom: 1rem;
|
623 |
+
padding-bottom: 1rem;
|
624 |
+
border-bottom: 1px solid #e2e8f0;
|
625 |
+
}}
|
626 |
+
|
627 |
+
/* Tabs */
|
628 |
+
.tabs-container {{
|
629 |
+
background: white;
|
630 |
+
border-radius: var(--border-radius);
|
631 |
+
box-shadow: var(--shadow-md);
|
632 |
+
overflow: hidden;
|
633 |
+
}}
|
634 |
+
|
635 |
+
.tabs-list {{
|
636 |
+
display: flex;
|
637 |
+
background: #f8fafc;
|
638 |
+
border-bottom: 1px solid #e2e8f0;
|
639 |
+
}}
|
640 |
+
|
641 |
+
.tab-button {{
|
642 |
+
flex: 1;
|
643 |
+
padding: 1rem;
|
644 |
+
background: none;
|
645 |
+
border: none;
|
646 |
+
cursor: pointer;
|
647 |
+
font-weight: 600;
|
648 |
+
color: #334155 !important;
|
649 |
+
font-size: 1rem;
|
650 |
+
transition: all 0.2s ease;
|
651 |
+
position: relative;
|
652 |
+
}}
|
653 |
+
|
654 |
+
.tab-button:hover {{
|
655 |
+
background: #f1f5f9;
|
656 |
+
color: #1e293b !important;
|
657 |
+
}}
|
658 |
+
|
659 |
+
.tab-button.active {{
|
660 |
+
color: var(--nestle-blue) !important;
|
661 |
+
background: white;
|
662 |
+
font-weight: 800;
|
663 |
+
}}
|
664 |
+
|
665 |
+
.tab-button.active::after {{
|
666 |
+
content: '';
|
667 |
+
position: absolute;
|
668 |
+
bottom: 0;
|
669 |
+
left: 0;
|
670 |
+
right: 0;
|
671 |
+
height: 2px;
|
672 |
+
background: var(--nestle-blue);
|
673 |
+
}}
|
674 |
+
|
675 |
+
.tab-content {{
|
676 |
+
padding: 2rem;
|
677 |
+
min-height: 400px;
|
678 |
+
display: none;
|
679 |
+
}}
|
680 |
+
|
681 |
+
.tab-content.active {{
|
682 |
+
display: block;
|
683 |
+
}}
|
684 |
+
|
685 |
+
.tab-content * {{
|
686 |
+
color: #1e293b !important;
|
687 |
+
text-shadow: none !important;
|
688 |
+
}}
|
689 |
+
|
690 |
+
/* Progress Component */
|
691 |
+
.progress-container {{
|
692 |
+
margin: 1rem 0;
|
693 |
+
padding: 1rem;
|
694 |
+
background: #f8fafc;
|
695 |
+
border-radius: var(--border-radius);
|
696 |
+
border: 1px solid #e2e8f0;
|
697 |
+
}}
|
698 |
+
|
699 |
+
.progress-header {{
|
700 |
+
display: flex;
|
701 |
+
justify-content: space-between;
|
702 |
+
margin-bottom: 0.5rem;
|
703 |
+
font-size: 1rem;
|
704 |
+
color: #334155 !important;
|
705 |
+
font-weight: 600;
|
706 |
+
}}
|
707 |
+
|
708 |
+
.progress-bar-container {{
|
709 |
+
width: 100%;
|
710 |
+
height: 8px;
|
711 |
+
background: #e2e8f0;
|
712 |
+
border-radius: 4px;
|
713 |
+
overflow: hidden;
|
714 |
+
}}
|
715 |
+
|
716 |
+
.progress-bar {{
|
717 |
+
height: 100%;
|
718 |
+
background: linear-gradient(90deg, var(--nestle-blue) 0%, var(--accent) 100%);
|
719 |
+
width: 0%;
|
720 |
+
transition: width 0.3s ease;
|
721 |
+
border-radius: 4px;
|
722 |
+
}}
|
723 |
+
|
724 |
+
/* Badge */
|
725 |
+
.badge {{
|
726 |
+
display: inline-flex;
|
727 |
+
align-items: center;
|
728 |
+
padding: 0.25rem 0.75rem;
|
729 |
+
background: #e2e8f0;
|
730 |
+
color: #1e293b !important;
|
731 |
+
border-radius: 9999px;
|
732 |
+
font-size: 0.85rem;
|
733 |
+
font-weight: 600;
|
734 |
+
}}
|
735 |
+
|
736 |
+
.badge.primary {{
|
737 |
+
background: var(--nestle-blue);
|
738 |
+
color: #fff !important;
|
739 |
+
}}
|
740 |
+
|
741 |
+
/* Button variants */
|
742 |
+
.btn, .btn-primary, .btn-secondary, .gr-button {{
|
743 |
+
display: inline-flex;
|
744 |
+
align-items: center;
|
745 |
+
justify-content: center;
|
746 |
+
gap: 0.5rem;
|
747 |
+
padding: 0.75rem 1.5rem;
|
748 |
+
border-radius: var(--border-radius);
|
749 |
+
font-weight: 700 !important;
|
750 |
+
font-size: 1rem !important;
|
751 |
+
border: none;
|
752 |
+
cursor: pointer;
|
753 |
+
transition: all 0.2s ease;
|
754 |
+
text-decoration: none;
|
755 |
+
letter-spacing: -0.01em;
|
756 |
+
}}
|
757 |
+
|
758 |
+
.btn-primary, .gr-button {{
|
759 |
+
background: linear-gradient(135deg, var(--nestle-blue) 0%, var(--nestle-blue-dark) 100%) !important;
|
760 |
+
color: white !important;
|
761 |
+
box-shadow: var(--shadow-sm) !important;
|
762 |
+
}}
|
763 |
+
|
764 |
+
.btn-primary:hover, .gr-button:hover {{
|
765 |
+
transform: translateY(-1px) !important;
|
766 |
+
box-shadow: var(--shadow-md) !important;
|
767 |
+
}}
|
768 |
+
|
769 |
+
.btn-secondary {{
|
770 |
+
background: white !important;
|
771 |
+
color: #374151 !important;
|
772 |
+
border: 1px solid #d1d5db !important;
|
773 |
+
}}
|
774 |
+
|
775 |
+
.btn-secondary:hover {{
|
776 |
+
background: #f9fafb !important;
|
777 |
+
}}
|
778 |
+
|
779 |
+
/* Enhanced Gradio component styling */
|
780 |
+
.gr-image, .gr-model3d {{
|
781 |
+
border: 2px solid #e2e8f0 !important;
|
782 |
+
border-radius: var(--border-radius) !important;
|
783 |
+
box-shadow: var(--shadow-sm) !important;
|
784 |
+
transition: all 0.2s ease !important;
|
785 |
+
}}
|
786 |
+
|
787 |
+
.gr-slider .noUi-connect {{
|
788 |
+
background: linear-gradient(90deg, var(--nestle-blue) 0%, var(--accent) 100%) !important;
|
789 |
+
}}
|
790 |
+
|
791 |
+
.gr-slider .noUi-handle {{
|
792 |
+
background: white !important;
|
793 |
+
border: 3px solid var(--nestle-blue) !important;
|
794 |
+
border-radius: 50% !important;
|
795 |
+
box-shadow: var(--shadow-md) !important;
|
796 |
+
}}
|
797 |
+
|
798 |
+
/* Responsive design */
|
799 |
+
@media (max-width: 768px) {{
|
800 |
+
.tabs-list {{
|
801 |
+
flex-direction: column;
|
802 |
+
}}
|
803 |
+
|
804 |
+
.card {{
|
805 |
+
padding: 1rem;
|
806 |
+
}}
|
807 |
+
}}
|
808 |
+
|
809 |
+
/* SUPER AGGRESSIVE TEXT FIXES */
|
810 |
+
/* Target every possible Gradio text element */
|
811 |
+
.gradio-container .gr-group .gr-form label,
|
812 |
+
.gradio-container .gr-group .gr-form span,
|
813 |
+
.gradio-container .gr-group .gr-form div,
|
814 |
+
.gradio-container .gr-group .gr-form p,
|
815 |
+
.gradio-container .gr-block label,
|
816 |
+
.gradio-container .gr-block span,
|
817 |
+
.gradio-container .gr-block div,
|
818 |
+
.gradio-container .gr-block p,
|
819 |
+
.gradio-container .gr-box label,
|
820 |
+
.gradio-container .gr-box span,
|
821 |
+
.gradio-container .gr-box div,
|
822 |
+
.gradio-container .gr-box p {{
|
823 |
+
color: #ffffff !important;
|
824 |
+
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.8) !important;
|
825 |
+
font-weight: 600 !important;
|
826 |
+
opacity: 1 !important;
|
827 |
+
}}
|
828 |
+
|
829 |
+
/* Target Svelte components specifically */
|
830 |
+
[class*="svelte-"] {{
|
831 |
+
color: #ffffff !important;
|
832 |
+
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.8) !important;
|
833 |
+
}}
|
834 |
+
|
835 |
+
/* Target slider labels and info text */
|
836 |
+
.gr-slider label,
|
837 |
+
.gr-slider .gr-text,
|
838 |
+
.gr-slider span,
|
839 |
+
.gr-checkbox label,
|
840 |
+
.gr-checkbox span {{
|
841 |
+
color: #ffffff !important;
|
842 |
+
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.8) !important;
|
843 |
+
font-weight: 600 !important;
|
844 |
+
}}
|
845 |
+
|
846 |
+
/* Target info text specifically */
|
847 |
+
.gr-info,
|
848 |
+
[class*="info"],
|
849 |
+
.info {{
|
850 |
+
color: #ffffff !important;
|
851 |
+
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.8) !important;
|
852 |
+
font-weight: 500 !important;
|
853 |
+
background: rgba(0, 0, 0, 0.2) !important;
|
854 |
+
padding: 2px 6px !important;
|
855 |
+
border-radius: 4px !important;
|
856 |
+
}}
|
857 |
+
|
858 |
+
/* Fix for image action icons */
|
859 |
+
.gr-image .image-button,
|
860 |
+
.gr-image button,
|
861 |
+
.gr-image .icon-button,
|
862 |
+
.gr-image [role="button"],
|
863 |
+
.gr-image .svelte-1pijsyv,
|
864 |
+
.gr-image .svelte-1pijsyv button {{
|
865 |
+
background: rgba(255, 255, 255, 0.95) !important;
|
866 |
+
border: 1px solid #e2e8f0 !important;
|
867 |
+
border-radius: 8px !important;
|
868 |
+
padding: 8px !important;
|
869 |
+
margin: 2px !important;
|
870 |
+
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.15) !important;
|
871 |
+
transition: all 0.2s ease !important;
|
872 |
+
color: #374151 !important;
|
873 |
+
font-size: 16px !important;
|
874 |
+
min-width: 36px !important;
|
875 |
+
min-height: 36px !important;
|
876 |
+
display: flex !important;
|
877 |
+
align-items: center !important;
|
878 |
+
justify-content: center !important;
|
879 |
+
}}
|
880 |
+
|
881 |
+
.gr-image .image-button:hover,
|
882 |
+
.gr-image button:hover,
|
883 |
+
.gr-image .icon-button:hover,
|
884 |
+
.gr-image [role="button"]:hover,
|
885 |
+
.gr-image .svelte-1pijsyv:hover,
|
886 |
+
.gr-image .svelte-1pijsyv button:hover {{
|
887 |
+
background: rgba(255, 255, 255, 1) !important;
|
888 |
+
transform: translateY(-1px) !important;
|
889 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.2) !important;
|
890 |
+
color: var(--nestle-blue) !important;
|
891 |
+
}}
|
892 |
+
|
893 |
+
/* Upload area text */
|
894 |
+
.gr-image .upload-text,
|
895 |
+
.gr-image .drag-text,
|
896 |
+
.gr-image .svelte-1ipelgc {{
|
897 |
+
color: #1e293b !important;
|
898 |
+
font-weight: 600 !important;
|
899 |
+
text-shadow: 0 0 4px white !important;
|
900 |
+
background: rgba(255, 255, 255, 0.9) !important;
|
901 |
+
padding: 8px 12px !important;
|
902 |
+
border-radius: 8px !important;
|
903 |
+
margin: 4px !important;
|
904 |
+
}}
|
905 |
+
|
906 |
+
/* Nuclear option - force all text to be white with shadow */
|
907 |
+
* {{
|
908 |
+
color: #ffffff !important;
|
909 |
+
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.8) !important;
|
910 |
+
}}
|
911 |
+
|
912 |
+
/* But override for specific areas that should be dark */
|
913 |
+
.tabs-container *,
|
914 |
+
.tab-content *,
|
915 |
+
.badge *,
|
916 |
+
.btn *,
|
917 |
+
.gr-button *,
|
918 |
+
.upload-area *,
|
919 |
+
.gr-image .upload-text *,
|
920 |
+
.gr-image .drag-text *,
|
921 |
+
.gr-image .svelte-1ipelgc *,
|
922 |
+
.progress-container * {{
|
923 |
+
color: #1e293b !important;
|
924 |
+
text-shadow: 0 0 2px white !important;
|
925 |
+
}}
|
926 |
+
|
927 |
+
/* Header text should remain white */
|
928 |
+
.card[style*="linear-gradient"] *,
|
929 |
+
.card[style*="linear-gradient"] h1,
|
930 |
+
.card[style*="linear-gradient"] p {{
|
931 |
+
color: #ffffff !important;
|
932 |
+
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.5) !important;
|
933 |
+
}}
|
934 |
+
"""
|
935 |
+
|
936 |
+
# interface
|
937 |
+
with gr.Blocks(
|
938 |
+
title="Nestlé 3D Generator",
|
939 |
+
css=ADVANCED_CSS,
|
940 |
+
head=ADVANCED_JS,
|
941 |
+
theme=gr.themes.Soft(
|
942 |
+
primary_hue="blue",
|
943 |
+
secondary_hue="slate",
|
944 |
+
neutral_hue="slate",
|
945 |
+
font=gr.themes.GoogleFont("Inter")
|
946 |
+
)
|
947 |
+
) as demo:
|
948 |
+
|
949 |
+
# Header
|
950 |
+
gr.HTML(create_header())
|
951 |
+
|
952 |
+
with gr.Row():
|
953 |
+
with gr.Column(scale=1):
|
954 |
+
with gr.Group():
|
955 |
+
gr.HTML("""
|
956 |
+
<div class="card-header">
|
957 |
+
<h3 class="card-title">📤 Product Image Upload</h3>
|
958 |
+
<p class="card-description">Upload a clear image of your Nestlé product</p>
|
959 |
+
</div>
|
960 |
+
""")
|
961 |
+
|
962 |
+
image_prompts = gr.Image(
|
963 |
+
label="",
|
964 |
+
type="filepath",
|
965 |
+
show_label=False,
|
966 |
+
height=350,
|
967 |
+
elem_classes=["upload-area"]
|
968 |
+
)
|
969 |
+
|
970 |
+
# Settings Card
|
971 |
+
with gr.Group():
|
972 |
+
gr.HTML("""
|
973 |
+
<div class="card-header">
|
974 |
+
<h3 class="card-title">⚙️ Generation Settings</h3>
|
975 |
+
<p class="card-description">Configure your 3D model generation</p>
|
976 |
+
</div>
|
977 |
+
""")
|
978 |
+
|
979 |
+
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt", value="high quality")
|
980 |
+
|
981 |
+
with gr.Row():
|
982 |
+
randomize_seed = gr.Checkbox(
|
983 |
+
label="🎲 Randomize Seed",
|
984 |
+
value=True
|
985 |
+
)
|
986 |
+
seed = gr.Slider(
|
987 |
+
label="Seed Value",
|
988 |
+
minimum=0,
|
989 |
+
maximum=MAX_SEED,
|
990 |
+
step=1,
|
991 |
+
value=0
|
992 |
+
)
|
993 |
+
|
994 |
+
num_inference_steps = gr.Slider(
|
995 |
+
label="🔄 Inference Steps",
|
996 |
+
minimum=8,
|
997 |
+
maximum=50,
|
998 |
+
step=1,
|
999 |
+
value=50,
|
1000 |
+
info="Higher values = better quality, slower generation"
|
1001 |
+
)
|
1002 |
+
|
1003 |
+
guidance_scale = gr.Slider(
|
1004 |
+
label="🎯 Guidance Scale",
|
1005 |
+
minimum=0.0,
|
1006 |
+
maximum=20.0,
|
1007 |
+
step=0.1,
|
1008 |
+
value=7.0,
|
1009 |
+
info="Controls how closely the model follows the input"
|
1010 |
+
)
|
1011 |
+
|
1012 |
+
with gr.Row():
|
1013 |
+
reduce_face = gr.Checkbox(
|
1014 |
+
label="🔧 Optimize Mesh",
|
1015 |
+
value=True,
|
1016 |
+
info="Reduce polygon count for better performance"
|
1017 |
+
)
|
1018 |
+
target_face_num = gr.Slider(
|
1019 |
+
label="Target Faces",
|
1020 |
+
maximum=1_000_000,
|
1021 |
+
minimum=10_000,
|
1022 |
+
value=DEFAULT_FACE_NUMBER,
|
1023 |
+
step=1000
|
1024 |
+
)
|
1025 |
+
|
1026 |
+
with gr.Column(scale=2):
|
1027 |
+
gr.HTML("""
|
1028 |
+
<div class="card-header">
|
1029 |
+
<h3 class="card-title">3D Model Generation</h3>
|
1030 |
+
<p class="card-description">View your generated 3D models and apply textures</p>
|
1031 |
+
</div>
|
1032 |
+
""")
|
1033 |
+
|
1034 |
+
# CT React-like
|
1035 |
+
gr.HTML(create_tabs())
|
1036 |
+
|
1037 |
+
# PB
|
1038 |
+
gr.HTML(create_progress_bar())
|
1039 |
+
|
1040 |
+
# Hidden Gradio components for actual functionality
|
1041 |
+
with gr.Row(visible=False):
|
1042 |
+
seg_image = gr.Image(type="pil", format="png", interactive=False)
|
1043 |
+
model_output = gr.Model3D(interactive=False)
|
1044 |
+
textured_model_output = gr.Model3D(interactive=False)
|
1045 |
+
|
1046 |
+
# Action Buttons
|
1047 |
+
with gr.Row():
|
1048 |
+
gen_button = gr.Button(
|
1049 |
+
"🚀 Generate 3D Model",
|
1050 |
+
variant="primary",
|
1051 |
+
size="lg",
|
1052 |
+
elem_classes=["btn", "btn-primary"]
|
1053 |
+
)
|
1054 |
+
gen_texture_button = gr.Button(
|
1055 |
+
"🎨 Apply Texture",
|
1056 |
+
variant="secondary",
|
1057 |
+
size="lg",
|
1058 |
+
interactive=False,
|
1059 |
+
elem_classes=["btn", "btn-secondary"]
|
1060 |
+
)
|
1061 |
+
download_button = gr.Button(
|
1062 |
+
"💾 Download Model",
|
1063 |
+
variant="secondary",
|
1064 |
+
size="lg",
|
1065 |
+
elem_classes=["btn", "btn-secondary"]
|
1066 |
+
)
|
1067 |
+
|
1068 |
+
status_display = gr.HTML(
|
1069 |
+
"""<div style='text-align: center; padding: 1rem; color: #1e293b;'>
|
1070 |
+
<span style='display: inline-block; width: 8px; height: 8px; border-radius: 50%; background: #10b981; margin-right: 8px;'></span>
|
1071 |
+
Ready to generate your 3D model
|
1072 |
+
</div>"""
|
1073 |
+
)
|
1074 |
+
|
1075 |
+
# Event Handlers with JavaScript integration
|
1076 |
+
gen_button.click(
|
1077 |
+
fn=run_segmentation,
|
1078 |
+
inputs=[image_prompts],
|
1079 |
+
outputs=[seg_image],
|
1080 |
+
# js="() => { simulateProgress(); document.getElementById('progress-container').style.display = 'block'; }",
|
1081 |
+
).then(
|
1082 |
+
get_random_seed,
|
1083 |
+
inputs=[randomize_seed, seed],
|
1084 |
+
outputs=[seed],
|
1085 |
+
).then(
|
1086 |
+
image_to_3d,
|
1087 |
+
inputs=[
|
1088 |
+
seg_image,
|
1089 |
+
seed,
|
1090 |
+
num_inference_steps,
|
1091 |
+
guidance_scale,
|
1092 |
+
reduce_face,
|
1093 |
+
target_face_num
|
1094 |
+
],
|
1095 |
+
outputs=[model_output]
|
1096 |
+
).then(
|
1097 |
+
fn=lambda: gr.Button(interactive=True),
|
1098 |
+
outputs=[gen_texture_button]
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
gen_texture_button.click(
|
1102 |
+
run_texture,
|
1103 |
+
inputs=[image_prompts, model_output, seed, text_prompt],
|
1104 |
+
outputs=[textured_model_output]
|
1105 |
+
)
|
1106 |
+
|
1107 |
+
# with gr.Row():
|
1108 |
+
# examples = gr.Examples(
|
1109 |
+
# examples=[
|
1110 |
+
# f"./examples/{image}"
|
1111 |
+
# for image in os.listdir(f"./examples/")
|
1112 |
+
# ],
|
1113 |
+
# fn=run_full,
|
1114 |
+
# inputs=[image_prompts],
|
1115 |
+
# outputs=[seg_image, model_output, textured_model_output],
|
1116 |
+
# cache_examples=False,
|
1117 |
+
# )
|
1118 |
+
|
1119 |
+
demo.load(start_session)
|
1120 |
+
demo.unload(end_session)
|
1121 |
+
|
1122 |
+
|
1123 |
+
if __name__ == "__main__":
|
1124 |
+
demo.launch(share=False, show_error=True)
|
app-old-front.py
ADDED
@@ -0,0 +1,454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
import trimesh
|
8 |
+
import random
|
9 |
+
from transformers import AutoModelForImageSegmentation
|
10 |
+
from torchvision import transforms
|
11 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
12 |
+
import subprocess
|
13 |
+
import shutil
|
14 |
+
|
15 |
+
# install others
|
16 |
+
subprocess.run("pip install spandrel==0.4.1 --no-deps", shell=True, check=True)
|
17 |
+
|
18 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
DTYPE = torch.float16
|
20 |
+
|
21 |
+
print("DEVICE: ", DEVICE)
|
22 |
+
print("CUDA DEVICE NAME: ", torch.cuda.get_device_name(torch.cuda.current_device()))
|
23 |
+
|
24 |
+
DEFAULT_FACE_NUMBER = 100000
|
25 |
+
MAX_SEED = np.iinfo(np.int32).max
|
26 |
+
TRIPOSG_REPO_URL = "https://github.com/VAST-AI-Research/TripoSG.git"
|
27 |
+
MV_ADAPTER_REPO_URL = "https://github.com/huanngzh/MV-Adapter.git"
|
28 |
+
|
29 |
+
RMBG_PRETRAINED_MODEL = "checkpoints/RMBG-1.4"
|
30 |
+
TRIPOSG_PRETRAINED_MODEL = "checkpoints/TripoSG"
|
31 |
+
|
32 |
+
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
|
33 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
34 |
+
|
35 |
+
TRIPOSG_CODE_DIR = "./triposg"
|
36 |
+
if not os.path.exists(TRIPOSG_CODE_DIR):
|
37 |
+
os.system(f"git clone {TRIPOSG_REPO_URL} {TRIPOSG_CODE_DIR}")
|
38 |
+
|
39 |
+
MV_ADAPTER_CODE_DIR = "./mv_adapter"
|
40 |
+
if not os.path.exists(MV_ADAPTER_CODE_DIR):
|
41 |
+
os.system(f"git clone {MV_ADAPTER_REPO_URL} {MV_ADAPTER_CODE_DIR} && cd {MV_ADAPTER_CODE_DIR} && git checkout 7d37a97e9bc223cdb8fd26a76bd8dd46504c7c3d")
|
42 |
+
|
43 |
+
import sys
|
44 |
+
sys.path.append(TRIPOSG_CODE_DIR)
|
45 |
+
sys.path.append(os.path.join(TRIPOSG_CODE_DIR, "scripts"))
|
46 |
+
sys.path.append(MV_ADAPTER_CODE_DIR)
|
47 |
+
sys.path.append(os.path.join(MV_ADAPTER_CODE_DIR, "scripts"))
|
48 |
+
|
49 |
+
HEADER = """
|
50 |
+
# <img src="https://compass.uol/content/dam/aircompanycompass/header/logo-desktop.png" alt="Compass.UOL">
|
51 |
+
|
52 |
+
# Compass.UOL | Nestlé| Image to 3D | Proof of Concept
|
53 |
+
|
54 |
+
## State-of-the-art 3D Generation Using Large-Scale Rectified Flow Transformers
|
55 |
+
|
56 |
+
## 📋 Quick Start Guide:
|
57 |
+
1. **Upload an image** (single object works best)
|
58 |
+
2. Click **Generate Shape** to create the 3D mesh
|
59 |
+
3. Click **Apply Texture** to add textures
|
60 |
+
4. Use **Download GLB** to save the 3D model
|
61 |
+
5. Adjust parameters under **Generation Settings** for fine-tuning
|
62 |
+
|
63 |
+
Best results come from clean, well-lit images with clear subject isolation.
|
64 |
+
"""
|
65 |
+
|
66 |
+
# # triposg
|
67 |
+
from image_process import prepare_image
|
68 |
+
from briarmbg import BriaRMBG
|
69 |
+
snapshot_download("briaai/RMBG-1.4", local_dir=RMBG_PRETRAINED_MODEL)
|
70 |
+
rmbg_net = BriaRMBG.from_pretrained(RMBG_PRETRAINED_MODEL).to(DEVICE)
|
71 |
+
rmbg_net.eval()
|
72 |
+
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
73 |
+
snapshot_download("VAST-AI/TripoSG", local_dir=TRIPOSG_PRETRAINED_MODEL)
|
74 |
+
triposg_pipe = TripoSGPipeline.from_pretrained(TRIPOSG_PRETRAINED_MODEL).to(DEVICE, DTYPE)
|
75 |
+
|
76 |
+
# mv adapter
|
77 |
+
NUM_VIEWS = 6
|
78 |
+
from inference_ig2mv_sdxl import prepare_pipeline, preprocess_image, remove_bg
|
79 |
+
from mvadapter.utils import get_orthogonal_camera, tensor_to_image, make_image_grid
|
80 |
+
from mvadapter.utils.render import NVDiffRastContextWrapper, load_mesh, render
|
81 |
+
mv_adapter_pipe = prepare_pipeline(
|
82 |
+
base_model="stabilityai/stable-diffusion-xl-base-1.0",
|
83 |
+
vae_model="madebyollin/sdxl-vae-fp16-fix",
|
84 |
+
unet_model=None,
|
85 |
+
lora_model=None,
|
86 |
+
adapter_path="huanngzh/mv-adapter",
|
87 |
+
scheduler=None,
|
88 |
+
num_views=NUM_VIEWS,
|
89 |
+
device=DEVICE,
|
90 |
+
dtype=torch.float16,
|
91 |
+
)
|
92 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
93 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
94 |
+
)
|
95 |
+
birefnet.to(DEVICE)
|
96 |
+
transform_image = transforms.Compose(
|
97 |
+
[
|
98 |
+
transforms.Resize((1024, 1024)),
|
99 |
+
transforms.ToTensor(),
|
100 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
101 |
+
]
|
102 |
+
)
|
103 |
+
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, DEVICE)
|
104 |
+
|
105 |
+
if not os.path.exists("checkpoints/RealESRGAN_x2plus.pth"):
|
106 |
+
hf_hub_download("dtarnow/UPscaler", filename="RealESRGAN_x2plus.pth", local_dir="checkpoints")
|
107 |
+
if not os.path.exists("checkpoints/big-lama.pt"):
|
108 |
+
subprocess.run("wget -P checkpoints/ https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt", shell=True, check=True)
|
109 |
+
|
110 |
+
def start_session(req: gr.Request):
|
111 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
112 |
+
os.makedirs(save_dir, exist_ok=True)
|
113 |
+
print("start session, mkdir", save_dir)
|
114 |
+
|
115 |
+
def end_session(req: gr.Request):
|
116 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
117 |
+
shutil.rmtree(save_dir)
|
118 |
+
|
119 |
+
def get_random_hex():
|
120 |
+
random_bytes = os.urandom(8)
|
121 |
+
random_hex = random_bytes.hex()
|
122 |
+
return random_hex
|
123 |
+
|
124 |
+
def get_random_seed(randomize_seed, seed):
|
125 |
+
if randomize_seed:
|
126 |
+
seed = random.randint(0, MAX_SEED)
|
127 |
+
return seed
|
128 |
+
|
129 |
+
@spaces.GPU(duration=180)
|
130 |
+
def run_full(image: str, req: gr.Request):
|
131 |
+
seed = 0
|
132 |
+
num_inference_steps = 50
|
133 |
+
guidance_scale = 7.5
|
134 |
+
simplify = True
|
135 |
+
target_face_num = DEFAULT_FACE_NUMBER
|
136 |
+
|
137 |
+
image_seg = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
138 |
+
|
139 |
+
outputs = triposg_pipe(
|
140 |
+
image=image_seg,
|
141 |
+
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
|
142 |
+
num_inference_steps=num_inference_steps,
|
143 |
+
guidance_scale=guidance_scale
|
144 |
+
).samples[0]
|
145 |
+
print("mesh extraction done")
|
146 |
+
mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))
|
147 |
+
|
148 |
+
if simplify:
|
149 |
+
print("start simplify")
|
150 |
+
from utils import simplify_mesh
|
151 |
+
mesh = simplify_mesh(mesh, target_face_num)
|
152 |
+
|
153 |
+
save_dir = os.path.join(TMP_DIR, "examples")
|
154 |
+
os.makedirs(save_dir, exist_ok=True)
|
155 |
+
mesh_path = os.path.join(save_dir, f"triposg_{get_random_hex()}.glb")
|
156 |
+
mesh.export(mesh_path)
|
157 |
+
print("save to ", mesh_path)
|
158 |
+
|
159 |
+
torch.cuda.empty_cache()
|
160 |
+
|
161 |
+
height, width = 768, 768
|
162 |
+
# Prepare cameras
|
163 |
+
cameras = get_orthogonal_camera(
|
164 |
+
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
165 |
+
distance=[1.8] * NUM_VIEWS,
|
166 |
+
left=-0.55,
|
167 |
+
right=0.55,
|
168 |
+
bottom=-0.55,
|
169 |
+
top=0.55,
|
170 |
+
azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
171 |
+
device=DEVICE,
|
172 |
+
)
|
173 |
+
ctx = NVDiffRastContextWrapper(device=DEVICE, context_type="cuda")
|
174 |
+
|
175 |
+
mesh = load_mesh(mesh_path, rescale=True, device=DEVICE)
|
176 |
+
render_out = render(
|
177 |
+
ctx,
|
178 |
+
mesh,
|
179 |
+
cameras,
|
180 |
+
height=height,
|
181 |
+
width=width,
|
182 |
+
render_attr=False,
|
183 |
+
normal_background=0.0,
|
184 |
+
)
|
185 |
+
control_images = (
|
186 |
+
torch.cat(
|
187 |
+
[
|
188 |
+
(render_out.pos + 0.5).clamp(0, 1),
|
189 |
+
(render_out.normal / 2 + 0.5).clamp(0, 1),
|
190 |
+
],
|
191 |
+
dim=-1,
|
192 |
+
)
|
193 |
+
.permute(0, 3, 1, 2)
|
194 |
+
.to(DEVICE)
|
195 |
+
)
|
196 |
+
|
197 |
+
image = Image.open(image)
|
198 |
+
image = remove_bg_fn(image)
|
199 |
+
image = preprocess_image(image, height, width)
|
200 |
+
|
201 |
+
pipe_kwargs = {}
|
202 |
+
if seed != -1 and isinstance(seed, int):
|
203 |
+
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
204 |
+
|
205 |
+
images = mv_adapter_pipe(
|
206 |
+
"high quality",
|
207 |
+
height=height,
|
208 |
+
width=width,
|
209 |
+
num_inference_steps=15,
|
210 |
+
guidance_scale=3.0,
|
211 |
+
num_images_per_prompt=NUM_VIEWS,
|
212 |
+
control_image=control_images,
|
213 |
+
control_conditioning_scale=1.0,
|
214 |
+
reference_image=image,
|
215 |
+
reference_conditioning_scale=1.0,
|
216 |
+
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
|
217 |
+
cross_attention_kwargs={"scale": 1.0},
|
218 |
+
**pipe_kwargs,
|
219 |
+
).images
|
220 |
+
|
221 |
+
torch.cuda.empty_cache()
|
222 |
+
|
223 |
+
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
224 |
+
make_image_grid(images, rows=1).save(mv_image_path)
|
225 |
+
|
226 |
+
from texture import TexturePipeline, ModProcessConfig
|
227 |
+
texture_pipe = TexturePipeline(
|
228 |
+
upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
|
229 |
+
inpaint_ckpt_path="checkpoints/big-lama.pt",
|
230 |
+
device=DEVICE,
|
231 |
+
)
|
232 |
+
|
233 |
+
textured_glb_path = texture_pipe(
|
234 |
+
mesh_path=mesh_path,
|
235 |
+
save_dir=save_dir,
|
236 |
+
save_name=f"texture_mesh_{get_random_hex()}.glb",
|
237 |
+
uv_unwarp=True,
|
238 |
+
uv_size=4096,
|
239 |
+
rgb_path=mv_image_path,
|
240 |
+
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
241 |
+
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
242 |
+
)
|
243 |
+
|
244 |
+
return image_seg, mesh_path, textured_glb_path
|
245 |
+
|
246 |
+
|
247 |
+
@spaces.GPU()
|
248 |
+
@torch.no_grad()
|
249 |
+
def run_segmentation(image: str):
|
250 |
+
image = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
251 |
+
return image
|
252 |
+
|
253 |
+
@spaces.GPU(duration=90)
|
254 |
+
@torch.no_grad()
|
255 |
+
def image_to_3d(
|
256 |
+
image: Image.Image,
|
257 |
+
seed: int,
|
258 |
+
num_inference_steps: int,
|
259 |
+
guidance_scale: float,
|
260 |
+
simplify: bool,
|
261 |
+
target_face_num: int,
|
262 |
+
req: gr.Request
|
263 |
+
):
|
264 |
+
outputs = triposg_pipe(
|
265 |
+
image=image,
|
266 |
+
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
|
267 |
+
num_inference_steps=num_inference_steps,
|
268 |
+
guidance_scale=guidance_scale
|
269 |
+
).samples[0]
|
270 |
+
print("mesh extraction done")
|
271 |
+
mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))
|
272 |
+
|
273 |
+
if simplify:
|
274 |
+
print("start simplify")
|
275 |
+
from utils import simplify_mesh
|
276 |
+
mesh = simplify_mesh(mesh, target_face_num)
|
277 |
+
|
278 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
279 |
+
mesh_path = os.path.join(save_dir, f"triposg_{get_random_hex()}.glb")
|
280 |
+
mesh.export(mesh_path)
|
281 |
+
print("save to ", mesh_path)
|
282 |
+
|
283 |
+
torch.cuda.empty_cache()
|
284 |
+
|
285 |
+
return mesh_path
|
286 |
+
|
287 |
+
@spaces.GPU(duration=120)
|
288 |
+
@torch.no_grad()
|
289 |
+
def run_texture(image: Image, mesh_path: str, seed: int, text_prompt: str, req: gr.Request):
|
290 |
+
height, width = 768, 768
|
291 |
+
# Prepare cameras
|
292 |
+
cameras = get_orthogonal_camera(
|
293 |
+
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
294 |
+
distance=[1.8] * NUM_VIEWS,
|
295 |
+
left=-0.55,
|
296 |
+
right=0.55,
|
297 |
+
bottom=-0.55,
|
298 |
+
top=0.55,
|
299 |
+
azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
300 |
+
device=DEVICE,
|
301 |
+
)
|
302 |
+
ctx = NVDiffRastContextWrapper(device=DEVICE, context_type="cuda")
|
303 |
+
|
304 |
+
mesh = load_mesh(mesh_path, rescale=True, device=DEVICE)
|
305 |
+
render_out = render(
|
306 |
+
ctx,
|
307 |
+
mesh,
|
308 |
+
cameras,
|
309 |
+
height=height,
|
310 |
+
width=width,
|
311 |
+
render_attr=False,
|
312 |
+
normal_background=0.0,
|
313 |
+
)
|
314 |
+
control_images = (
|
315 |
+
torch.cat(
|
316 |
+
[
|
317 |
+
(render_out.pos + 0.5).clamp(0, 1),
|
318 |
+
(render_out.normal / 2 + 0.5).clamp(0, 1),
|
319 |
+
],
|
320 |
+
dim=-1,
|
321 |
+
)
|
322 |
+
.permute(0, 3, 1, 2)
|
323 |
+
.to(DEVICE)
|
324 |
+
)
|
325 |
+
|
326 |
+
image = Image.open(image)
|
327 |
+
image = remove_bg_fn(image)
|
328 |
+
image = preprocess_image(image, height, width)
|
329 |
+
|
330 |
+
pipe_kwargs = {}
|
331 |
+
if seed != -1 and isinstance(seed, int):
|
332 |
+
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
333 |
+
|
334 |
+
images = mv_adapter_pipe(
|
335 |
+
text_prompt,
|
336 |
+
height=height,
|
337 |
+
width=width,
|
338 |
+
num_inference_steps=15,
|
339 |
+
guidance_scale=3.0,
|
340 |
+
num_images_per_prompt=NUM_VIEWS,
|
341 |
+
control_image=control_images,
|
342 |
+
control_conditioning_scale=1.0,
|
343 |
+
reference_image=image,
|
344 |
+
reference_conditioning_scale=1.0,
|
345 |
+
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
|
346 |
+
cross_attention_kwargs={"scale": 1.0},
|
347 |
+
**pipe_kwargs,
|
348 |
+
).images
|
349 |
+
|
350 |
+
torch.cuda.empty_cache()
|
351 |
+
|
352 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
353 |
+
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
354 |
+
make_image_grid(images, rows=1).save(mv_image_path)
|
355 |
+
|
356 |
+
from texture import TexturePipeline, ModProcessConfig
|
357 |
+
texture_pipe = TexturePipeline(
|
358 |
+
upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
|
359 |
+
inpaint_ckpt_path="checkpoints/big-lama.pt",
|
360 |
+
device=DEVICE,
|
361 |
+
)
|
362 |
+
|
363 |
+
textured_glb_path = texture_pipe(
|
364 |
+
mesh_path=mesh_path,
|
365 |
+
save_dir=save_dir,
|
366 |
+
save_name=f"texture_mesh_{get_random_hex()}.glb",
|
367 |
+
uv_unwarp=True,
|
368 |
+
uv_size=4096,
|
369 |
+
rgb_path=mv_image_path,
|
370 |
+
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
371 |
+
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
372 |
+
)
|
373 |
+
|
374 |
+
return textured_glb_path
|
375 |
+
|
376 |
+
|
377 |
+
with gr.Blocks(title="Nestlé | Proof of Concept") as demo:
|
378 |
+
gr.Markdown(HEADER)
|
379 |
+
|
380 |
+
with gr.Row():
|
381 |
+
with gr.Column():
|
382 |
+
with gr.Row():
|
383 |
+
image_prompts = gr.Image(label="Input Image", type="filepath")
|
384 |
+
seg_image = gr.Image(
|
385 |
+
label="Segmentation Result", type="pil", format="png", interactive=False
|
386 |
+
)
|
387 |
+
|
388 |
+
with gr.Accordion("Generation Settings", open=True):
|
389 |
+
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt", value="high quality")
|
390 |
+
seed = gr.Slider(
|
391 |
+
label="Seed",
|
392 |
+
minimum=0,
|
393 |
+
maximum=MAX_SEED,
|
394 |
+
step=0,
|
395 |
+
value=0
|
396 |
+
)
|
397 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
398 |
+
num_inference_steps = gr.Slider(
|
399 |
+
label="Number of inference steps",
|
400 |
+
minimum=8,
|
401 |
+
maximum=50,
|
402 |
+
step=1,
|
403 |
+
value=50,
|
404 |
+
)
|
405 |
+
guidance_scale = gr.Slider(
|
406 |
+
label="CFG scale",
|
407 |
+
minimum=0.0,
|
408 |
+
maximum=20.0,
|
409 |
+
step=0.1,
|
410 |
+
value=7.0,
|
411 |
+
)
|
412 |
+
|
413 |
+
with gr.Row():
|
414 |
+
reduce_face = gr.Checkbox(label="Simplify Mesh", value=True)
|
415 |
+
target_face_num = gr.Slider(maximum=1000000, minimum=10000, value=DEFAULT_FACE_NUMBER, label="Target Face Number")
|
416 |
+
|
417 |
+
gen_button = gr.Button("Generate Shape", variant="primary")
|
418 |
+
gen_texture_button = gr.Button("Apply Texture", interactive=False)
|
419 |
+
|
420 |
+
with gr.Column():
|
421 |
+
model_output = gr.Model3D(label="Generated GLB", interactive=False)
|
422 |
+
textured_model_output = gr.Model3D(label="Textured GLB", interactive=False)
|
423 |
+
|
424 |
+
gen_button.click(
|
425 |
+
run_segmentation,
|
426 |
+
inputs=[image_prompts],
|
427 |
+
outputs=[seg_image]
|
428 |
+
).then(
|
429 |
+
get_random_seed,
|
430 |
+
inputs=[randomize_seed, seed],
|
431 |
+
outputs=[seed],
|
432 |
+
).then(
|
433 |
+
image_to_3d,
|
434 |
+
inputs=[
|
435 |
+
seg_image,
|
436 |
+
seed,
|
437 |
+
num_inference_steps,
|
438 |
+
guidance_scale,
|
439 |
+
reduce_face,
|
440 |
+
target_face_num
|
441 |
+
],
|
442 |
+
outputs=[model_output]
|
443 |
+
).then(lambda: gr.Button(interactive=True), outputs=[gen_texture_button])
|
444 |
+
|
445 |
+
gen_texture_button.click(
|
446 |
+
run_texture,
|
447 |
+
inputs=[image_prompts, model_output, seed, text_prompt],
|
448 |
+
outputs=[textured_model_output]
|
449 |
+
)
|
450 |
+
|
451 |
+
demo.load(start_session)
|
452 |
+
demo.unload(end_session)
|
453 |
+
|
454 |
+
demo.launch()
|
app.py
CHANGED
@@ -46,10 +46,22 @@ sys.path.append(os.path.join(TRIPOSG_CODE_DIR, "scripts"))
|
|
46 |
sys.path.append(MV_ADAPTER_CODE_DIR)
|
47 |
sys.path.append(os.path.join(MV_ADAPTER_CODE_DIR, "scripts"))
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# # triposg
|
55 |
from image_process import prepare_image
|
@@ -235,9 +247,7 @@ def run_full(image: str, req: gr.Request):
|
|
235 |
@spaces.GPU()
|
236 |
@torch.no_grad()
|
237 |
def run_segmentation(image: str):
|
238 |
-
print("run_segmentation pre image str path: ", image)
|
239 |
image = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
240 |
-
print("run_segmentation pos image: ", image)
|
241 |
return image
|
242 |
|
243 |
@spaces.GPU(duration=90)
|
@@ -363,721 +373,58 @@ def run_texture(image: Image, mesh_path: str, seed: int, text_prompt: str, req:
|
|
363 |
|
364 |
return textured_glb_path
|
365 |
|
366 |
-
# Custom UI components
|
367 |
-
def create_header():
|
368 |
-
return f"""
|
369 |
-
<div class="card" style="background: linear-gradient(135deg, {NESTLE_BLUE} 0%, {NESTLE_BLUE_DARK} 100%); color: white; border: none;">
|
370 |
-
<div style="display: flex; align-items: center; gap: 20px;">
|
371 |
-
<div style="background: white; padding: 12px; border-radius: 12px; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);">
|
372 |
-
<img src="https://logodownload.org/wp-content/uploads/2016/11/nestle-logo-1.png"
|
373 |
-
alt="Nestlé Logo" style="height: 48px; width: auto;">
|
374 |
-
</div>
|
375 |
-
<div style="flex: 1;">
|
376 |
-
<h1 style="margin: 0; font-size: 2.5rem; font-weight: 700; letter-spacing: -0.025em;">
|
377 |
-
Nestlé 3D Generator
|
378 |
-
</h1>
|
379 |
-
<p style="margin: 0.5rem 0 0 0; opacity: 0.9; font-size: 1.1rem;">
|
380 |
-
Transform your product images into stunning 3D models with AI
|
381 |
-
</p>
|
382 |
-
</div>
|
383 |
-
<div class="badge primary">Beta v2.0</div>
|
384 |
-
</div>
|
385 |
-
</div>
|
386 |
-
"""
|
387 |
-
|
388 |
-
def create_tabs():
|
389 |
-
return """
|
390 |
-
<div class="tabs-container">
|
391 |
-
<div class="tabs-list">
|
392 |
-
<button class="tab-button active" onclick="switchTab('segmentation')">
|
393 |
-
🔍 Segmentation
|
394 |
-
</button>
|
395 |
-
<button class="tab-button" onclick="switchTab('model')">
|
396 |
-
🎨 3D Model
|
397 |
-
</button>
|
398 |
-
<button class="tab-button" onclick="switchTab('textured')">
|
399 |
-
✨ Textured Model
|
400 |
-
</button>
|
401 |
-
</div>
|
402 |
-
|
403 |
-
<div id="segmentation-tab" class="tab-content active">
|
404 |
-
<div style="text-align: center; color: #1e293b;">
|
405 |
-
<div style="font-size: 4rem; margin-bottom: 1rem;">📤</div>
|
406 |
-
<p>Upload an image to see segmentation results</p>
|
407 |
-
</div>
|
408 |
-
</div>
|
409 |
-
|
410 |
-
<div id="model-tab" class="tab-content">
|
411 |
-
<div style="text-align: center; color: #1e293b;">
|
412 |
-
<div style="font-size: 4rem; margin-bottom: 1rem;">🎯</div>
|
413 |
-
<p>3D model will appear here after generation</p>
|
414 |
-
</div>
|
415 |
-
</div>
|
416 |
-
|
417 |
-
<div id="textured-tab" class="tab-content">
|
418 |
-
<div style="text-align: center; color: #1e293b;">
|
419 |
-
<div style="font-size: 4rem; margin-bottom: 1rem;">🎨</div>
|
420 |
-
<p>Textured model will appear here</p>
|
421 |
-
</div>
|
422 |
-
</div>
|
423 |
-
</div>
|
424 |
-
"""
|
425 |
-
|
426 |
-
def create_progress_bar():
|
427 |
-
return """
|
428 |
-
<div class="progress-container" style="display: none;" id="progress-container">
|
429 |
-
<div class="progress-header">
|
430 |
-
<span>Generating 3D model...</span>
|
431 |
-
<span id="progress-text">0%</span>
|
432 |
-
</div>
|
433 |
-
<div class="progress-bar-container">
|
434 |
-
<div class="progress-bar" id="progress-bar"></div>
|
435 |
-
</div>
|
436 |
-
</div>
|
437 |
-
"""
|
438 |
-
|
439 |
-
# JavaScript
|
440 |
-
ADVANCED_JS = """
|
441 |
-
<script>
|
442 |
-
// React-like state management simulation
|
443 |
-
window.appState = {
|
444 |
-
currentTab: 'segmentation',
|
445 |
-
isGenerating: false,
|
446 |
-
progress: 0
|
447 |
-
};
|
448 |
-
|
449 |
-
// Tab switching functionality
|
450 |
-
function switchTab(tabName) {
|
451 |
-
window.appState.currentTab = tabName;
|
452 |
-
|
453 |
-
// Hide all tab contents
|
454 |
-
document.querySelectorAll('.tab-content').forEach(el => {
|
455 |
-
el.style.display = 'none';
|
456 |
-
});
|
457 |
-
|
458 |
-
// Show selected tab
|
459 |
-
const selectedTab = document.getElementById(tabName + '-tab');
|
460 |
-
if (selectedTab) {
|
461 |
-
selectedTab.style.display = 'block';
|
462 |
-
}
|
463 |
-
|
464 |
-
// Update tab buttons
|
465 |
-
document.querySelectorAll('.tab-button').forEach(btn => {
|
466 |
-
btn.classList.remove('active');
|
467 |
-
});
|
468 |
-
|
469 |
-
const activeBtn = document.querySelector(`[onclick="switchTab('${tabName}')"]`);
|
470 |
-
if (activeBtn) {
|
471 |
-
activeBtn.classList.add('active');
|
472 |
-
}
|
473 |
-
}
|
474 |
-
|
475 |
-
// Progress simulation
|
476 |
-
function simulateProgress() {
|
477 |
-
window.appState.isGenerating = true;
|
478 |
-
window.appState.progress = 0;
|
479 |
-
|
480 |
-
const progressBar = document.getElementById('progress-bar');
|
481 |
-
const progressText = document.getElementById('progress-text');
|
482 |
-
|
483 |
-
const interval = setInterval(() => {
|
484 |
-
window.appState.progress += 10;
|
485 |
-
|
486 |
-
if (progressBar) {
|
487 |
-
progressBar.style.width = window.appState.progress + '%';
|
488 |
-
}
|
489 |
-
|
490 |
-
if (progressText) {
|
491 |
-
progressText.textContent = window.appState.progress + '%';
|
492 |
-
}
|
493 |
-
|
494 |
-
if (window.appState.progress >= 100) {
|
495 |
-
clearInterval(interval);
|
496 |
-
window.appState.isGenerating = false;
|
497 |
-
}
|
498 |
-
}, 300);
|
499 |
-
}
|
500 |
-
|
501 |
-
// Drag and drop simulation
|
502 |
-
function setupDragDrop() {
|
503 |
-
const uploadArea = document.querySelector('.upload-area');
|
504 |
-
if (uploadArea) {
|
505 |
-
uploadArea.addEventListener('dragover', (e) => {
|
506 |
-
e.preventDefault();
|
507 |
-
uploadArea.classList.add('drag-over');
|
508 |
-
});
|
509 |
-
|
510 |
-
uploadArea.addEventListener('dragleave', () => {
|
511 |
-
uploadArea.classList.remove('drag-over');
|
512 |
-
});
|
513 |
-
|
514 |
-
uploadArea.addEventListener('drop', (e) => {
|
515 |
-
e.preventDefault();
|
516 |
-
uploadArea.classList.remove('drag-over');
|
517 |
-
// Handle file drop
|
518 |
-
});
|
519 |
-
}
|
520 |
-
}
|
521 |
-
|
522 |
-
// Initialize when DOM is ready
|
523 |
-
document.addEventListener('DOMContentLoaded', function() {
|
524 |
-
setupDragDrop();
|
525 |
-
switchTab('segmentation');
|
526 |
-
});
|
527 |
-
</script>
|
528 |
-
"""
|
529 |
-
|
530 |
-
# CSS
|
531 |
-
ADVANCED_CSS = f"""
|
532 |
-
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
533 |
-
|
534 |
-
:root {{
|
535 |
-
--nestle-blue: {NESTLE_BLUE};
|
536 |
-
--nestle-blue-dark: {NESTLE_BLUE_DARK};
|
537 |
-
--accent: {ACCENT_COLOR};
|
538 |
-
--shadow-sm: 0 1px 3px rgba(0, 0, 0, 0.1);
|
539 |
-
--shadow-md: 0 4px 12px rgba(0, 0, 0, 0.1);
|
540 |
-
--shadow-lg: 0 10px 25px rgba(0, 0, 0, 0.1);
|
541 |
-
--border-radius: 12px;
|
542 |
-
}}
|
543 |
-
|
544 |
-
* {{
|
545 |
-
font-family: 'Inter', sans-serif !important;
|
546 |
-
}}
|
547 |
-
|
548 |
-
body, .gradio-container {{
|
549 |
-
background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%) !important;
|
550 |
-
margin: 0 !important;
|
551 |
-
padding: 0 !important;
|
552 |
-
min-height: 100vh !important;
|
553 |
-
color: #ffffff !important;
|
554 |
-
font-size: 1rem !important;
|
555 |
-
}}
|
556 |
-
|
557 |
-
/* AGGRESSIVE TEXT COLOR FIXES - Higher specificity */
|
558 |
-
.gradio-container *,
|
559 |
-
.gradio-container div,
|
560 |
-
.gradio-container span,
|
561 |
-
.gradio-container p,
|
562 |
-
.gradio-container label,
|
563 |
-
.gradio-container h1,
|
564 |
-
.gradio-container h2,
|
565 |
-
.gradio-container h3,
|
566 |
-
.gradio-container h4,
|
567 |
-
.gradio-container h5,
|
568 |
-
.gradio-container h6 {{
|
569 |
-
color: #ffffff !important;
|
570 |
-
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.8) !important;
|
571 |
-
}}
|
572 |
-
|
573 |
-
/* Force white text on all Gradio components */
|
574 |
-
.gr-group *,
|
575 |
-
.gr-form *,
|
576 |
-
.gr-block *,
|
577 |
-
.gr-box *,
|
578 |
-
div[class*="gr-"] *,
|
579 |
-
div[class*="svelte-"] *,
|
580 |
-
span[class*="svelte-"] *,
|
581 |
-
label[class*="svelte-"] *,
|
582 |
-
p[class*="svelte-"] * {{
|
583 |
-
color: #ffffff !important;
|
584 |
-
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.8) !important;
|
585 |
-
font-weight: 600 !important;
|
586 |
-
}}
|
587 |
-
|
588 |
-
/* Specific targeting for card descriptions and titles */
|
589 |
-
.card-description,
|
590 |
-
.card-title,
|
591 |
-
div.card-description,
|
592 |
-
div.card-title,
|
593 |
-
p.card-description,
|
594 |
-
h3.card-title {{
|
595 |
-
color: #ffffff !important;
|
596 |
-
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.8) !important;
|
597 |
-
font-weight: 700 !important;
|
598 |
-
background: rgba(0, 0, 0, 0.3) !important;
|
599 |
-
padding: 4px 8px !important;
|
600 |
-
border-radius: 6px !important;
|
601 |
-
margin: 0.5rem 0 !important;
|
602 |
-
display: inline-block !important;
|
603 |
-
}}
|
604 |
-
|
605 |
-
/* Card Components */
|
606 |
-
.card {{
|
607 |
-
background: white;
|
608 |
-
border: 1px solid #e2e8f0;
|
609 |
-
border-radius: var(--border-radius);
|
610 |
-
box-shadow: var(--shadow-md);
|
611 |
-
padding: 1.5rem;
|
612 |
-
transition: all 0.2s ease;
|
613 |
-
margin-bottom: 1rem;
|
614 |
-
}}
|
615 |
-
|
616 |
-
.card:hover {{
|
617 |
-
box-shadow: var(--shadow-lg);
|
618 |
-
transform: translateY(-2px);
|
619 |
-
}}
|
620 |
-
|
621 |
-
.card-header {{
|
622 |
-
margin-bottom: 1rem;
|
623 |
-
padding-bottom: 1rem;
|
624 |
-
border-bottom: 1px solid #e2e8f0;
|
625 |
-
}}
|
626 |
-
|
627 |
-
/* Tabs */
|
628 |
-
.tabs-container {{
|
629 |
-
background: white;
|
630 |
-
border-radius: var(--border-radius);
|
631 |
-
box-shadow: var(--shadow-md);
|
632 |
-
overflow: hidden;
|
633 |
-
}}
|
634 |
-
|
635 |
-
.tabs-list {{
|
636 |
-
display: flex;
|
637 |
-
background: #f8fafc;
|
638 |
-
border-bottom: 1px solid #e2e8f0;
|
639 |
-
}}
|
640 |
-
|
641 |
-
.tab-button {{
|
642 |
-
flex: 1;
|
643 |
-
padding: 1rem;
|
644 |
-
background: none;
|
645 |
-
border: none;
|
646 |
-
cursor: pointer;
|
647 |
-
font-weight: 600;
|
648 |
-
color: #334155 !important;
|
649 |
-
font-size: 1rem;
|
650 |
-
transition: all 0.2s ease;
|
651 |
-
position: relative;
|
652 |
-
}}
|
653 |
-
|
654 |
-
.tab-button:hover {{
|
655 |
-
background: #f1f5f9;
|
656 |
-
color: #1e293b !important;
|
657 |
-
}}
|
658 |
-
|
659 |
-
.tab-button.active {{
|
660 |
-
color: var(--nestle-blue) !important;
|
661 |
-
background: white;
|
662 |
-
font-weight: 800;
|
663 |
-
}}
|
664 |
-
|
665 |
-
.tab-button.active::after {{
|
666 |
-
content: '';
|
667 |
-
position: absolute;
|
668 |
-
bottom: 0;
|
669 |
-
left: 0;
|
670 |
-
right: 0;
|
671 |
-
height: 2px;
|
672 |
-
background: var(--nestle-blue);
|
673 |
-
}}
|
674 |
-
|
675 |
-
.tab-content {{
|
676 |
-
padding: 2rem;
|
677 |
-
min-height: 400px;
|
678 |
-
display: none;
|
679 |
-
}}
|
680 |
-
|
681 |
-
.tab-content.active {{
|
682 |
-
display: block;
|
683 |
-
}}
|
684 |
-
|
685 |
-
.tab-content * {{
|
686 |
-
color: #1e293b !important;
|
687 |
-
text-shadow: none !important;
|
688 |
-
}}
|
689 |
-
|
690 |
-
/* Progress Component */
|
691 |
-
.progress-container {{
|
692 |
-
margin: 1rem 0;
|
693 |
-
padding: 1rem;
|
694 |
-
background: #f8fafc;
|
695 |
-
border-radius: var(--border-radius);
|
696 |
-
border: 1px solid #e2e8f0;
|
697 |
-
}}
|
698 |
-
|
699 |
-
.progress-header {{
|
700 |
-
display: flex;
|
701 |
-
justify-content: space-between;
|
702 |
-
margin-bottom: 0.5rem;
|
703 |
-
font-size: 1rem;
|
704 |
-
color: #334155 !important;
|
705 |
-
font-weight: 600;
|
706 |
-
}}
|
707 |
-
|
708 |
-
.progress-bar-container {{
|
709 |
-
width: 100%;
|
710 |
-
height: 8px;
|
711 |
-
background: #e2e8f0;
|
712 |
-
border-radius: 4px;
|
713 |
-
overflow: hidden;
|
714 |
-
}}
|
715 |
|
716 |
-
.
|
717 |
-
|
718 |
-
background: linear-gradient(90deg, var(--nestle-blue) 0%, var(--accent) 100%);
|
719 |
-
width: 0%;
|
720 |
-
transition: width 0.3s ease;
|
721 |
-
border-radius: 4px;
|
722 |
-
}}
|
723 |
|
724 |
-
/* Badge */
|
725 |
-
.badge {{
|
726 |
-
display: inline-flex;
|
727 |
-
align-items: center;
|
728 |
-
padding: 0.25rem 0.75rem;
|
729 |
-
background: #e2e8f0;
|
730 |
-
color: #1e293b !important;
|
731 |
-
border-radius: 9999px;
|
732 |
-
font-size: 0.85rem;
|
733 |
-
font-weight: 600;
|
734 |
-
}}
|
735 |
-
|
736 |
-
.badge.primary {{
|
737 |
-
background: var(--nestle-blue);
|
738 |
-
color: #fff !important;
|
739 |
-
}}
|
740 |
-
|
741 |
-
/* Button variants */
|
742 |
-
.btn, .btn-primary, .btn-secondary, .gr-button {{
|
743 |
-
display: inline-flex;
|
744 |
-
align-items: center;
|
745 |
-
justify-content: center;
|
746 |
-
gap: 0.5rem;
|
747 |
-
padding: 0.75rem 1.5rem;
|
748 |
-
border-radius: var(--border-radius);
|
749 |
-
font-weight: 700 !important;
|
750 |
-
font-size: 1rem !important;
|
751 |
-
border: none;
|
752 |
-
cursor: pointer;
|
753 |
-
transition: all 0.2s ease;
|
754 |
-
text-decoration: none;
|
755 |
-
letter-spacing: -0.01em;
|
756 |
-
}}
|
757 |
-
|
758 |
-
.btn-primary, .gr-button {{
|
759 |
-
background: linear-gradient(135deg, var(--nestle-blue) 0%, var(--nestle-blue-dark) 100%) !important;
|
760 |
-
color: white !important;
|
761 |
-
box-shadow: var(--shadow-sm) !important;
|
762 |
-
}}
|
763 |
-
|
764 |
-
.btn-primary:hover, .gr-button:hover {{
|
765 |
-
transform: translateY(-1px) !important;
|
766 |
-
box-shadow: var(--shadow-md) !important;
|
767 |
-
}}
|
768 |
-
|
769 |
-
.btn-secondary {{
|
770 |
-
background: white !important;
|
771 |
-
color: #374151 !important;
|
772 |
-
border: 1px solid #d1d5db !important;
|
773 |
-
}}
|
774 |
-
|
775 |
-
.btn-secondary:hover {{
|
776 |
-
background: #f9fafb !important;
|
777 |
-
}}
|
778 |
-
|
779 |
-
/* Enhanced Gradio component styling */
|
780 |
-
.gr-image, .gr-model3d {{
|
781 |
-
border: 2px solid #e2e8f0 !important;
|
782 |
-
border-radius: var(--border-radius) !important;
|
783 |
-
box-shadow: var(--shadow-sm) !important;
|
784 |
-
transition: all 0.2s ease !important;
|
785 |
-
}}
|
786 |
-
|
787 |
-
.gr-slider .noUi-connect {{
|
788 |
-
background: linear-gradient(90deg, var(--nestle-blue) 0%, var(--accent) 100%) !important;
|
789 |
-
}}
|
790 |
-
|
791 |
-
.gr-slider .noUi-handle {{
|
792 |
-
background: white !important;
|
793 |
-
border: 3px solid var(--nestle-blue) !important;
|
794 |
-
border-radius: 50% !important;
|
795 |
-
box-shadow: var(--shadow-md) !important;
|
796 |
-
}}
|
797 |
-
|
798 |
-
/* Responsive design */
|
799 |
-
@media (max-width: 768px) {{
|
800 |
-
.tabs-list {{
|
801 |
-
flex-direction: column;
|
802 |
-
}}
|
803 |
-
|
804 |
-
.card {{
|
805 |
-
padding: 1rem;
|
806 |
-
}}
|
807 |
-
}}
|
808 |
-
|
809 |
-
/* SUPER AGGRESSIVE TEXT FIXES */
|
810 |
-
/* Target every possible Gradio text element */
|
811 |
-
.gradio-container .gr-group .gr-form label,
|
812 |
-
.gradio-container .gr-group .gr-form span,
|
813 |
-
.gradio-container .gr-group .gr-form div,
|
814 |
-
.gradio-container .gr-group .gr-form p,
|
815 |
-
.gradio-container .gr-block label,
|
816 |
-
.gradio-container .gr-block span,
|
817 |
-
.gradio-container .gr-block div,
|
818 |
-
.gradio-container .gr-block p,
|
819 |
-
.gradio-container .gr-box label,
|
820 |
-
.gradio-container .gr-box span,
|
821 |
-
.gradio-container .gr-box div,
|
822 |
-
.gradio-container .gr-box p {{
|
823 |
-
color: #ffffff !important;
|
824 |
-
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.8) !important;
|
825 |
-
font-weight: 600 !important;
|
826 |
-
opacity: 1 !important;
|
827 |
-
}}
|
828 |
-
|
829 |
-
/* Target Svelte components specifically */
|
830 |
-
[class*="svelte-"] {{
|
831 |
-
color: #ffffff !important;
|
832 |
-
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.8) !important;
|
833 |
-
}}
|
834 |
-
|
835 |
-
/* Target slider labels and info text */
|
836 |
-
.gr-slider label,
|
837 |
-
.gr-slider .gr-text,
|
838 |
-
.gr-slider span,
|
839 |
-
.gr-checkbox label,
|
840 |
-
.gr-checkbox span {{
|
841 |
-
color: #ffffff !important;
|
842 |
-
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.8) !important;
|
843 |
-
font-weight: 600 !important;
|
844 |
-
}}
|
845 |
-
|
846 |
-
/* Target info text specifically */
|
847 |
-
.gr-info,
|
848 |
-
[class*="info"],
|
849 |
-
.info {{
|
850 |
-
color: #ffffff !important;
|
851 |
-
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.8) !important;
|
852 |
-
font-weight: 500 !important;
|
853 |
-
background: rgba(0, 0, 0, 0.2) !important;
|
854 |
-
padding: 2px 6px !important;
|
855 |
-
border-radius: 4px !important;
|
856 |
-
}}
|
857 |
-
|
858 |
-
/* Fix for image action icons */
|
859 |
-
.gr-image .image-button,
|
860 |
-
.gr-image button,
|
861 |
-
.gr-image .icon-button,
|
862 |
-
.gr-image [role="button"],
|
863 |
-
.gr-image .svelte-1pijsyv,
|
864 |
-
.gr-image .svelte-1pijsyv button {{
|
865 |
-
background: rgba(255, 255, 255, 0.95) !important;
|
866 |
-
border: 1px solid #e2e8f0 !important;
|
867 |
-
border-radius: 8px !important;
|
868 |
-
padding: 8px !important;
|
869 |
-
margin: 2px !important;
|
870 |
-
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.15) !important;
|
871 |
-
transition: all 0.2s ease !important;
|
872 |
-
color: #374151 !important;
|
873 |
-
font-size: 16px !important;
|
874 |
-
min-width: 36px !important;
|
875 |
-
min-height: 36px !important;
|
876 |
-
display: flex !important;
|
877 |
-
align-items: center !important;
|
878 |
-
justify-content: center !important;
|
879 |
-
}}
|
880 |
-
|
881 |
-
.gr-image .image-button:hover,
|
882 |
-
.gr-image button:hover,
|
883 |
-
.gr-image .icon-button:hover,
|
884 |
-
.gr-image [role="button"]:hover,
|
885 |
-
.gr-image .svelte-1pijsyv:hover,
|
886 |
-
.gr-image .svelte-1pijsyv button:hover {{
|
887 |
-
background: rgba(255, 255, 255, 1) !important;
|
888 |
-
transform: translateY(-1px) !important;
|
889 |
-
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.2) !important;
|
890 |
-
color: var(--nestle-blue) !important;
|
891 |
-
}}
|
892 |
-
|
893 |
-
/* Upload area text */
|
894 |
-
.gr-image .upload-text,
|
895 |
-
.gr-image .drag-text,
|
896 |
-
.gr-image .svelte-1ipelgc {{
|
897 |
-
color: #1e293b !important;
|
898 |
-
font-weight: 600 !important;
|
899 |
-
text-shadow: 0 0 4px white !important;
|
900 |
-
background: rgba(255, 255, 255, 0.9) !important;
|
901 |
-
padding: 8px 12px !important;
|
902 |
-
border-radius: 8px !important;
|
903 |
-
margin: 4px !important;
|
904 |
-
}}
|
905 |
-
|
906 |
-
/* Nuclear option - force all text to be white with shadow */
|
907 |
-
* {{
|
908 |
-
color: #ffffff !important;
|
909 |
-
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.8) !important;
|
910 |
-
}}
|
911 |
-
|
912 |
-
/* But override for specific areas that should be dark */
|
913 |
-
.tabs-container *,
|
914 |
-
.tab-content *,
|
915 |
-
.badge *,
|
916 |
-
.btn *,
|
917 |
-
.gr-button *,
|
918 |
-
.upload-area *,
|
919 |
-
.gr-image .upload-text *,
|
920 |
-
.gr-image .drag-text *,
|
921 |
-
.gr-image .svelte-1ipelgc *,
|
922 |
-
.progress-container * {{
|
923 |
-
color: #1e293b !important;
|
924 |
-
text-shadow: 0 0 2px white !important;
|
925 |
-
}}
|
926 |
-
|
927 |
-
/* Header text should remain white */
|
928 |
-
.card[style*="linear-gradient"] *,
|
929 |
-
.card[style*="linear-gradient"] h1,
|
930 |
-
.card[style*="linear-gradient"] p {{
|
931 |
-
color: #ffffff !important;
|
932 |
-
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.5) !important;
|
933 |
-
}}
|
934 |
-
"""
|
935 |
-
|
936 |
-
# interface
|
937 |
-
with gr.Blocks(
|
938 |
-
title="Nestlé 3D Generator",
|
939 |
-
css=ADVANCED_CSS,
|
940 |
-
head=ADVANCED_JS,
|
941 |
-
theme=gr.themes.Soft(
|
942 |
-
primary_hue="blue",
|
943 |
-
secondary_hue="slate",
|
944 |
-
neutral_hue="slate",
|
945 |
-
font=gr.themes.GoogleFont("Inter")
|
946 |
-
)
|
947 |
-
) as demo:
|
948 |
-
|
949 |
-
# Header
|
950 |
-
gr.HTML(create_header())
|
951 |
-
|
952 |
with gr.Row():
|
953 |
-
with gr.Column(
|
954 |
-
with gr.
|
955 |
-
gr.
|
956 |
-
|
957 |
-
|
958 |
-
<p class="card-description">Upload a clear image of your Nestlé product</p>
|
959 |
-
</div>
|
960 |
-
""")
|
961 |
-
|
962 |
-
image_prompts = gr.Image(
|
963 |
-
label="",
|
964 |
-
type="filepath",
|
965 |
-
show_label=False,
|
966 |
-
height=350,
|
967 |
-
elem_classes=["upload-area"]
|
968 |
)
|
969 |
-
|
970 |
-
# Settings Card
|
971 |
-
with gr.Group():
|
972 |
-
gr.HTML("""
|
973 |
-
<div class="card-header">
|
974 |
-
<h3 class="card-title">⚙️ Generation Settings</h3>
|
975 |
-
<p class="card-description">Configure your 3D model generation</p>
|
976 |
-
</div>
|
977 |
-
""")
|
978 |
-
|
979 |
-
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt", value="high quality")
|
980 |
|
981 |
-
|
982 |
-
|
983 |
-
|
984 |
-
|
985 |
-
|
986 |
-
|
987 |
-
|
988 |
-
|
989 |
-
|
990 |
-
|
991 |
-
value=0
|
992 |
-
)
|
993 |
-
|
994 |
num_inference_steps = gr.Slider(
|
995 |
-
label="
|
996 |
minimum=8,
|
997 |
maximum=50,
|
998 |
step=1,
|
999 |
value=50,
|
1000 |
-
info="Higher values = better quality, slower generation"
|
1001 |
)
|
1002 |
-
|
1003 |
guidance_scale = gr.Slider(
|
1004 |
-
label="
|
1005 |
minimum=0.0,
|
1006 |
maximum=20.0,
|
1007 |
step=0.1,
|
1008 |
value=7.0,
|
1009 |
-
info="Controls how closely the model follows the input"
|
1010 |
)
|
1011 |
|
1012 |
with gr.Row():
|
1013 |
-
reduce_face = gr.Checkbox(
|
1014 |
-
|
1015 |
-
value=True,
|
1016 |
-
info="Reduce polygon count for better performance"
|
1017 |
-
)
|
1018 |
-
target_face_num = gr.Slider(
|
1019 |
-
label="Target Faces",
|
1020 |
-
maximum=1_000_000,
|
1021 |
-
minimum=10_000,
|
1022 |
-
value=DEFAULT_FACE_NUMBER,
|
1023 |
-
step=1000
|
1024 |
-
)
|
1025 |
|
1026 |
-
|
1027 |
-
|
1028 |
-
<div class="card-header">
|
1029 |
-
<h3 class="card-title">3D Model Generation</h3>
|
1030 |
-
<p class="card-description">View your generated 3D models and apply textures</p>
|
1031 |
-
</div>
|
1032 |
-
""")
|
1033 |
-
|
1034 |
-
# CT React-like
|
1035 |
-
gr.HTML(create_tabs())
|
1036 |
-
|
1037 |
-
# PB
|
1038 |
-
gr.HTML(create_progress_bar())
|
1039 |
-
|
1040 |
-
# Hidden Gradio components for actual functionality
|
1041 |
-
with gr.Row(visible=False):
|
1042 |
-
seg_image = gr.Image(type="pil", format="png", interactive=False)
|
1043 |
-
model_output = gr.Model3D(interactive=False)
|
1044 |
-
textured_model_output = gr.Model3D(interactive=False)
|
1045 |
|
1046 |
-
|
1047 |
-
|
1048 |
-
|
1049 |
-
"🚀 Generate 3D Model",
|
1050 |
-
variant="primary",
|
1051 |
-
size="lg",
|
1052 |
-
elem_classes=["btn", "btn-primary"]
|
1053 |
-
)
|
1054 |
-
gen_texture_button = gr.Button(
|
1055 |
-
"🎨 Apply Texture",
|
1056 |
-
variant="secondary",
|
1057 |
-
size="lg",
|
1058 |
-
interactive=False,
|
1059 |
-
elem_classes=["btn", "btn-secondary"]
|
1060 |
-
)
|
1061 |
-
download_button = gr.Button(
|
1062 |
-
"💾 Download Model",
|
1063 |
-
variant="secondary",
|
1064 |
-
size="lg",
|
1065 |
-
elem_classes=["btn", "btn-secondary"]
|
1066 |
-
)
|
1067 |
-
|
1068 |
-
status_display = gr.HTML(
|
1069 |
-
"""<div style='text-align: center; padding: 1rem; color: #1e293b;'>
|
1070 |
-
<span style='display: inline-block; width: 8px; height: 8px; border-radius: 50%; background: #10b981; margin-right: 8px;'></span>
|
1071 |
-
Ready to generate your 3D model
|
1072 |
-
</div>"""
|
1073 |
-
)
|
1074 |
|
1075 |
-
# Event Handlers with JavaScript integration
|
1076 |
gen_button.click(
|
1077 |
-
|
1078 |
inputs=[image_prompts],
|
1079 |
-
outputs=[seg_image]
|
1080 |
-
# js="() => { simulateProgress(); document.getElementById('progress-container').style.display = 'block'; }",
|
1081 |
).then(
|
1082 |
get_random_seed,
|
1083 |
inputs=[randomize_seed, seed],
|
@@ -1093,32 +440,15 @@ with gr.Blocks(
|
|
1093 |
target_face_num
|
1094 |
],
|
1095 |
outputs=[model_output]
|
1096 |
-
).then(
|
1097 |
-
fn=lambda: gr.Button(interactive=True),
|
1098 |
-
outputs=[gen_texture_button]
|
1099 |
-
)
|
1100 |
|
1101 |
gen_texture_button.click(
|
1102 |
run_texture,
|
1103 |
inputs=[image_prompts, model_output, seed, text_prompt],
|
1104 |
outputs=[textured_model_output]
|
1105 |
)
|
1106 |
-
|
1107 |
-
# with gr.Row():
|
1108 |
-
# examples = gr.Examples(
|
1109 |
-
# examples=[
|
1110 |
-
# f"./examples/{image}"
|
1111 |
-
# for image in os.listdir(f"./examples/")
|
1112 |
-
# ],
|
1113 |
-
# fn=run_full,
|
1114 |
-
# inputs=[image_prompts],
|
1115 |
-
# outputs=[seg_image, model_output, textured_model_output],
|
1116 |
-
# cache_examples=False,
|
1117 |
-
# )
|
1118 |
|
1119 |
demo.load(start_session)
|
1120 |
demo.unload(end_session)
|
1121 |
|
1122 |
-
|
1123 |
-
if __name__ == "__main__":
|
1124 |
-
demo.launch(share=False, show_error=True)
|
|
|
46 |
sys.path.append(MV_ADAPTER_CODE_DIR)
|
47 |
sys.path.append(os.path.join(MV_ADAPTER_CODE_DIR, "scripts"))
|
48 |
|
49 |
+
HEADER = """
|
50 |
+
# <img src="https://compass.uol/content/dam/aircompanycompass/header/logo-desktop.png" alt="Compass.UOL">
|
51 |
+
|
52 |
+
# Compass.UOL | Nestlé| Image to 3D | Proof of Concept
|
53 |
+
|
54 |
+
## State-of-the-art 3D Generation Using Large-Scale Rectified Flow Transformers
|
55 |
+
|
56 |
+
## 📋 Quick Start Guide:
|
57 |
+
1. **Upload an image** (single object works best)
|
58 |
+
2. Click **Generate Shape** to create the 3D mesh
|
59 |
+
3. Click **Apply Texture** to add textures
|
60 |
+
4. Use **Download GLB** to save the 3D model
|
61 |
+
5. Adjust parameters under **Generation Settings** for fine-tuning
|
62 |
+
|
63 |
+
Best results come from clean, well-lit images with clear subject isolation.
|
64 |
+
"""
|
65 |
|
66 |
# # triposg
|
67 |
from image_process import prepare_image
|
|
|
247 |
@spaces.GPU()
|
248 |
@torch.no_grad()
|
249 |
def run_segmentation(image: str):
|
|
|
250 |
image = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
|
|
251 |
return image
|
252 |
|
253 |
@spaces.GPU(duration=90)
|
|
|
373 |
|
374 |
return textured_glb_path
|
375 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
|
377 |
+
with gr.Blocks(title="Nestlé | Proof of Concept") as demo:
|
378 |
+
gr.Markdown(HEADER)
|
|
|
|
|
|
|
|
|
|
|
379 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
with gr.Row():
|
381 |
+
with gr.Column():
|
382 |
+
with gr.Row():
|
383 |
+
image_prompts = gr.Image(label="Input Image", type="filepath")
|
384 |
+
seg_image = gr.Image(
|
385 |
+
label="Segmentation Result", type="pil", format="png", interactive=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
387 |
|
388 |
+
with gr.Accordion("Generation Settings", open=True):
|
389 |
+
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt", value="high quality")
|
390 |
+
seed = gr.Slider(
|
391 |
+
label="Seed",
|
392 |
+
minimum=0,
|
393 |
+
maximum=MAX_SEED,
|
394 |
+
step=0,
|
395 |
+
value=0
|
396 |
+
)
|
397 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
|
|
|
398 |
num_inference_steps = gr.Slider(
|
399 |
+
label="Number of inference steps",
|
400 |
minimum=8,
|
401 |
maximum=50,
|
402 |
step=1,
|
403 |
value=50,
|
|
|
404 |
)
|
|
|
405 |
guidance_scale = gr.Slider(
|
406 |
+
label="CFG scale",
|
407 |
minimum=0.0,
|
408 |
maximum=20.0,
|
409 |
step=0.1,
|
410 |
value=7.0,
|
|
|
411 |
)
|
412 |
|
413 |
with gr.Row():
|
414 |
+
reduce_face = gr.Checkbox(label="Simplify Mesh", value=True)
|
415 |
+
target_face_num = gr.Slider(maximum=1000000, minimum=10000, value=DEFAULT_FACE_NUMBER, label="Target Face Number")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
|
417 |
+
gen_button = gr.Button("Generate Shape", variant="primary")
|
418 |
+
gen_texture_button = gr.Button("Apply Texture", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
|
420 |
+
with gr.Column():
|
421 |
+
model_output = gr.Model3D(label="Generated GLB", interactive=False)
|
422 |
+
textured_model_output = gr.Model3D(label="Textured GLB", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
423 |
|
|
|
424 |
gen_button.click(
|
425 |
+
run_segmentation,
|
426 |
inputs=[image_prompts],
|
427 |
+
outputs=[seg_image]
|
|
|
428 |
).then(
|
429 |
get_random_seed,
|
430 |
inputs=[randomize_seed, seed],
|
|
|
440 |
target_face_num
|
441 |
],
|
442 |
outputs=[model_output]
|
443 |
+
).then(lambda: gr.Button(interactive=True), outputs=[gen_texture_button])
|
|
|
|
|
|
|
444 |
|
445 |
gen_texture_button.click(
|
446 |
run_texture,
|
447 |
inputs=[image_prompts, model_output, seed, text_prompt],
|
448 |
outputs=[textured_model_output]
|
449 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
|
451 |
demo.load(start_session)
|
452 |
demo.unload(end_session)
|
453 |
|
454 |
+
demo.launch()
|
|
|
|