|
import gradio as gr |
|
from transformers import pipeline |
|
import numpy as np |
|
import librosa |
|
import pandas as pd |
|
|
|
|
|
MODEL_NAME = "openai/whisper-large-v3" |
|
BATCH_SIZE = 8 |
|
|
|
|
|
pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=MODEL_NAME, |
|
chunk_length_s=30, |
|
|
|
) |
|
|
|
|
|
|
|
def format_output_to_list(data): |
|
formatted_list = "\n".join([f"{item['timestamp'][0]}s - {item['timestamp'][1]}s \t : {item['text']}" for item in data]) |
|
return formatted_list |
|
|
|
def transcribe(inputs, task): |
|
if inputs is None: |
|
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") |
|
|
|
output = pipe(inputs, batch_size=BATCH_SIZE, return_timestamps="word", generate_kwargs={"task": task}) |
|
text = output['text'] |
|
timestamps = format_output_to_list(output['chunks']) |
|
return [text, timestamps] |
|
|
|
examples = [ |
|
["arabic_english_audios/audios/arabic_audio_1.wav"], |
|
["arabic_english_audios/audios/arabic_audio_2.wav"], |
|
["arabic_english_audios/audios/arabic_audio_3.wav"], |
|
["arabic_english_audios/audios/arabic_audio_4.wav"], |
|
["arabic_english_audios/audios/arabic_hate_audio_1.mp3"], |
|
["arabic_english_audios/audios/arabic_hate_audio_2.mp3"], |
|
["arabic_english_audios/audios/arabic_hate_audio_3.mp3"], |
|
["arabic_english_audios/audios/english_audio_1.wav"], |
|
["arabic_english_audios/audios/english_audio_2.mp3"], |
|
["arabic_english_audios/audios/english_audio_3.mp3"], |
|
["arabic_english_audios/audios/english_audio_4.mp3"], |
|
["arabic_english_audios/audios/english_audio_5.mp3"], |
|
["arabic_english_audios/audios/english_audio_6.wav"] |
|
] |
|
|
|
with gr.Blocks(theme=gr.themes.Default()) as demo: |
|
gr.HTML("<h1 style='text-align: center;'>Transcribe Audio with Timestamps using whisper-large-v3</h1>") |
|
gr.Markdown("") |
|
with gr.Row(): |
|
with gr.Column(): |
|
audio_input = gr.Audio(sources=["upload", 'microphone'], type="filepath", label="Audio file") |
|
task = gr.Radio(["transcribe", "translate"], label="Task") |
|
with gr.Row(): |
|
clear_button = gr.ClearButton(value="Clear") |
|
submit_button = gr.Button("Submit", variant="primary", ) |
|
|
|
with gr.Column(): |
|
transcript_output = gr.Text(label="Transcript") |
|
timestamp_output = gr.Text(label="Timestamp") |
|
|
|
examples = gr.Examples(examples, inputs=audio_input, outputs=[transcript_output, timestamp_output], fn=transcribe, examples_per_page=20) |
|
|
|
submit_button.click(fn=transcribe, inputs=audio_input, outputs=[transcript_output, timestamp_output]) |
|
clear_button.add([audio_input, transcript_output, timestamp_output]) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|