# -*- coding: utf-8 -*- # /=====================================================================\ # # | MagicDataReadiness - Monolithic PDF Processor | # # |---------------------------------------------------------------------| # # | Description: | # # | Extracts structured content (text, tables, figures, formulas) | # # | from PDF documents using layout analysis and OCR. | # # | Combines logic from various internal components. | # # |---------------------------------------------------------------------| # # | Dependencies: | # # | - Python 3.8+ | # # | - External Libraries (See imports below and installation notes) | # # | - Pre-trained Models (Downloaded automatically to model dir) | # # |---------------------------------------------------------------------| # # | Usage: | # # | See the __main__ block at the end of the script for an example. | # # \=====================================================================/ # # --- External Library Imports --- import os import re import io import copy import fitz # PyMuPDF from fitz import Document as FitzDocument, Page as FitzPage, Matrix as FitzMatrix import numpy as np import cv2 # OpenCV import torch # PyTorch import requests # For downloading models from pathlib import Path from enum import auto, Enum from dataclasses import dataclass from typing import Literal, Iterable, Generator, Sequence, Callable, TypeAlias, List, Dict, Any from collections import defaultdict from math import pi, ceil, sin, cos, sqrt, atan2 from PIL.Image import Image, frombytes, new as new_image, Resampling as PILResampling, Transform as PILTransform from PIL.ImageOps import expand as pil_expand from PIL import ImageDraw from PIL.ImageFont import load_default, FreeTypeFont from shapely.geometry import Polygon import pyclipper # Used in onnxocr/db_postprocess from unicodedata import category from alphabet_detector import AlphabetDetector from munch import Munch # Required by latex.py (pix2tex wrapper) from transformers import LayoutLMv3ForTokenClassification # Required by layout_order/layoutreader import onnxruntime # Required by onnxocr components # --- Potentially Installable External Dependencies --- # Ensure these are installed or available in your environment try: from doclayout_yolo import YOLOv10 except ImportError: print("Warning: Could not import YOLOv10 from doclayout_yolo. Layout detection will fail.") YOLOv10 = None try: from pix2tex.cli import LatexOCR except ImportError: print("Warning: Could not import LatexOCR from pix2tex.cli. LaTeX extraction will fail.") LatexOCR = None try: # Dynamic import within MDRTableParser, assuming struct_eqtable.py exists or is installable pass # from struct_eqtable import build_model except ImportError: print("Warning: Could not import build_model from struct_eqtable. Table parsing might fail.") # --- MagicDataReadiness Core Components --- # --- MDR Utilities (downloader.py) --- def mdr_download_model(url: str, file_path: Path): """Downloads a model file from a URL to a local path.""" try: response = requests.get(url, stream=True, timeout=120) # Increased timeout response.raise_for_status() file_path.parent.mkdir(parents=True, exist_ok=True) with open(file_path, "wb") as file: for chunk in response.iter_content(chunk_size=8192): file.write(chunk) print(f"Successfully downloaded {file_path.name}") except requests.exceptions.RequestException as e: print(f"ERROR: Failed to download {url}: {e}") if file_path.exists(): os.remove(file_path) raise FileNotFoundError(f"Failed to download model from {url}") from e except Exception as e: print(f"ERROR: Failed writing file {file_path}: {e}") if file_path.exists(): os.remove(file_path) raise e # --- MDR Utilities (utils.py from doc_page_extractor internals) --- def mdr_ensure_directory(path: str) -> str: """Ensures a directory exists, creating it if necessary.""" path = os.path.abspath(path) os.makedirs(path, exist_ok=True) return path def mdr_is_whitespace(text: str) -> bool: """Checks if a string contains only whitespace.""" return bool(re.match(r"^\s*$", text)) if text else True def mdr_expand_image(image: Image, percent: float) -> Image: """Expands an image with a white border.""" if percent <= 0: return image.copy() w, h = image.size; bw, bh = ceil(w * percent), ceil(h * percent) fill: tuple[int, ...] | int if image.mode == "RGBA": fill = (255, 255, 255, 255) elif image.mode in ("LA", "L"): fill = 255 else: fill = (255, 255, 255) return pil_expand(image=image, border=(bw, bh), fill=fill) # --- MDR Geometry (rectangle.py) --- MDRPoint: TypeAlias = tuple[float, float] @dataclass class MDRRectangle: """Represents a geometric rectangle defined by four corner points.""" lt: MDRPoint; rt: MDRPoint; lb: MDRPoint; rb: MDRPoint def __iter__(self) -> Generator[MDRPoint, None, None]: yield self.lt; yield self.lb; yield self.rb; yield self.rt @property def is_valid(self) -> bool: try: return Polygon(self).is_valid except: return False @property def segments(self) -> Generator[tuple[MDRPoint, MDRPoint], None, None]: yield (self.lt, self.lb); yield (self.lb, self.rb); yield (self.rb, self.rt); yield (self.rt, self.lt) @property def area(self) -> float: try: return Polygon(self).area except: return 0.0 @property def size(self) -> tuple[float, float]: widths, heights = [], []; for i, (p1, p2) in enumerate(self.segments): dx, dy = p1[0]-p2[0], p1[1]-p2[1]; dist = sqrt(dx*dx + dy*dy) if i % 2 == 0: heights.append(dist) else: widths.append(dist) avg_w = sum(widths)/len(widths) if widths else 0.0; avg_h = sum(heights)/len(heights) if heights else 0.0 return avg_w, avg_h @property def wrapper(self) -> tuple[float, float, float, float]: x1, y1, x2, y2 = float("inf"), float("inf"), float("-inf"), float("-inf") for x, y in self: x1, y1, x2, y2 = min(x1, x), min(y1, y), max(x2, x), max(y2, y) return x1, y1, x2, y2 def mdr_intersection_area(rect1: MDRRectangle, rect2: MDRRectangle) -> float: """Calculates intersection area between two MDRRectangles.""" try: p1, p2 = Polygon(rect1), Polygon(rect2); if not p1.is_valid or not p2.is_valid: return 0.0 return p1.intersection(p2).area except: return 0.0 # --- MDR Data Structures (ExtractedResult.py) --- @dataclass class MDROcrFragment: """Represents a fragment of text identified by OCR.""" order: int; text: str; rank: float; rect: MDRRectangle class MDRLayoutClass(Enum): """Enumeration of different layout types identified.""" TITLE=0; PLAIN_TEXT=1; ABANDON=2; FIGURE=3; FIGURE_CAPTION=4; TABLE=5; TABLE_CAPTION=6; TABLE_FOOTNOTE=7; ISOLATE_FORMULA=8; FORMULA_CAPTION=9 class MDRTableLayoutParsedFormat(Enum): """Enumeration for formats of parsed table content.""" LATEX=auto(); MARKDOWN=auto(); HTML=auto() @dataclass class MDRBaseLayoutElement: """Base class for layout elements found on a page.""" rect: MDRRectangle; fragments: list[MDROcrFragment] @dataclass class MDRPlainLayoutElement(MDRBaseLayoutElement): """Layout element for plain text, titles, captions, figures, etc.""" cls: Literal[MDRLayoutClass.TITLE, MDRLayoutClass.PLAIN_TEXT, MDRLayoutClass.ABANDON, MDRLayoutClass.FIGURE, MDRLayoutClass.FIGURE_CAPTION, MDRLayoutClass.TABLE_CAPTION, MDRLayoutClass.TABLE_FOOTNOTE, MDRLayoutClass.FORMULA_CAPTION] @dataclass class MDRTableLayoutElement(MDRBaseLayoutElement): """Layout element specifically for tables.""" parsed: tuple[str, MDRTableLayoutParsedFormat] | None; cls: Literal[MDRLayoutClass.TABLE] = MDRLayoutClass.TABLE @dataclass class MDRFormulaLayoutElement(MDRBaseLayoutElement): """Layout element specifically for formulas.""" latex: str | None; cls: Literal[MDRLayoutClass.ISOLATE_FORMULA] = MDRLayoutClass.ISOLATE_FORMULA MDRLayoutElement = MDRPlainLayoutElement | MDRTableLayoutElement | MDRFormulaLayoutElement # Type alias @dataclass class MDRExtractionResult: """Holds the complete result of extracting from a single page image.""" rotation: float; layouts: list[MDRLayoutElement]; extracted_image: Image; adjusted_image: Image | None # --- MDR Data Structures (types.py - Original script 4) --- MDRProgressReportCallback: TypeAlias = Callable[[int, int], None] class MDROcrLevel(Enum): Once=auto(); OncePerLayout=auto() class MDRExtractedTableFormat(Enum): LATEX=auto(); MARKDOWN=auto(); HTML=auto(); DISABLE=auto() class MDRTextKind(Enum): TITLE=0; PLAIN_TEXT=1; ABANDON=2 @dataclass class MDRTextSpan: """Represents a span of text content within a block.""" content: str; rank: float; rect: MDRRectangle @dataclass class MDRBasicBlock: """Base class for structured blocks extracted from the document.""" rect: MDRRectangle; texts: list[MDRTextSpan]; font_size: float # Relative font size (0-1) @dataclass class MDRTextBlock(MDRBasicBlock): """A structured block containing text content.""" kind: MDRTextKind; has_paragraph_indentation: bool = False; last_line_touch_end: bool = False class MDRTableFormat(Enum): LATEX=auto(); MARKDOWN=auto(); HTML=auto(); UNRECOGNIZABLE=auto() @dataclass class MDRTableBlock(MDRBasicBlock): """A structured block representing a table.""" content: str; format: MDRTableFormat; image: Image # Image clip of the table @dataclass class MDRFormulaBlock(MDRBasicBlock): """A structured block representing a formula.""" content: str | None; image: Image # Image clip of the formula @dataclass class MDRFigureBlock(MDRBasicBlock): """A structured block representing a figure/image.""" image: Image # Image clip of the figure MDRAssetBlock = MDRTableBlock | MDRFormulaBlock | MDRFigureBlock # Type alias MDRStructuredBlock = MDRTextBlock | MDRAssetBlock # Type alias # --- MDR Utilities (utils.py - Original script 3) --- def mdr_similarity_ratio(v1: float, v2: float) -> float: """Calculates the ratio of the smaller value to the larger value (0-1).""" if v1==0 and v2==0: return 1.0; if v1<0 or v2<0: return 0.0; v1, v2 = (v2, v1) if v1 > v2 else (v1, v2); return 1.0 if v2==0 else v1/v2 def mdr_intersection_bounds_size(r1: MDRRectangle, r2: MDRRectangle) -> tuple[float, float]: """Calculates width/height of the intersection bounding box.""" try: p1, p2 = Polygon(r1), Polygon(r2); if not p1.is_valid or not p2.is_valid: return 0.0, 0.0; inter = p1.intersection(p2); if inter.is_empty: return 0.0, 0.0; minx, miny, maxx, maxy = inter.bounds; return maxx-minx, maxy-miny except: return 0.0, 0.0 _MDR_CJKA_PATTERN = re.compile(r"[\u4e00-\u9fff\u3040-\u309f\u30a0-\u30ff\uac00-\ud7a3\u0600-\u06ff]") def mdr_contains_cjka(text: str): """Checks if text contains Chinese, Japanese, Korean, or Arabic chars.""" return bool(_MDR_CJKA_PATTERN.search(text)) if text else False # --- MDR Text Processing (text_matcher.py - Original script 7) --- class _MDR_TokenPhase(Enum): Init=0; Letter=1; Character=2; Number=3; Space=4 _mdr_alphabet_detector = AlphabetDetector() def _mdr_is_letter(char: str): if not category(char).startswith("L"): return False try: return _mdr_alphabet_detector.is_latin(char) or _mdr_alphabet_detector.is_cyrillic(char) or _mdr_alphabet_detector.is_greek(char) or _mdr_alphabet_detector.is_hebrew(char) except: return False def mdr_split_into_words(text: str): """Splits text into words, numbers, and individual non-alphanumeric chars.""" if not text: return; sp, np, nsp = re.compile(r"\s"), re.compile(r"\d"), re.compile(r"[\.,']"); buf, phase = io.StringIO(), _MDR_TokenPhase.Init; for char in text: is_l, is_d, is_s, is_ns = _mdr_is_letter(char), np.match(char), sp.match(char), nsp.match(char) if is_l: if phase in (_MDR_TokenPhase.Number, _MDR_TokenPhase.Character): w=buf.getvalue(); yield w if w else None; buf=io.StringIO() buf.write(char); phase=_MDR_TokenPhase.Letter elif is_d: if phase in (_MDR_TokenPhase.Letter, _MDR_TokenPhase.Character): w=buf.getvalue(); yield w if w else None; buf=io.StringIO() buf.write(char); phase=_MDR_TokenPhase.Number elif phase==_MDR_TokenPhase.Number and is_ns: buf.write(char) else: if phase in (_MDR_TokenPhase.Letter, _MDR_TokenPhase.Number): w=buf.getvalue(); yield w if w else None; buf=io.StringIO() if is_s: phase=_MDR_TokenPhase.Space else: yield char; phase=_MDR_TokenPhase.Character if phase in (_MDR_TokenPhase.Letter, _MDR_TokenPhase.Number): w=buf.getvalue(); yield w if w else None def mdr_check_text_similarity(t1: str, t2: str) -> tuple[float, int]: """Calculates word-based similarity between two texts.""" w1, w2 = list(mdr_split_into_words(t1)), list(mdr_split_into_words(t2)); l1, l2 = len(w1), len(w2) if l1==0 and l2==0: return 1.0, 0; if l1==0 or l2==0: return 0.0, max(l1, l2); if l1 > l2: w1, w2, l1, l2 = w2, w1, l2, l1; taken = [False]*l2; matches = 0 for word1 in w1: for i, word2 in enumerate(w2): if not taken[i] and word1==word2: taken[i]=True; matches+=1; break mismatches = l2 - matches; return 1.0 - (mismatches/l2), l2 # --- MDR Geometry Processing (rotation.py) --- class MDRRotationAdjuster: """Adjusts point coordinates based on image rotation.""" def __init__(self, origin_size: tuple[int, int], new_size: tuple[int, int], rotation: float, to_origin_coordinate: bool): fs, ts = (new_size, origin_size) if to_origin_coordinate else (origin_size, new_size) self._rot = rotation if to_origin_coordinate else -rotation self._c_off = (fs[0]/2.0, fs[1]/2.0); self._n_off = (ts[0]/2.0, ts[1]/2.0) def adjust(self, point: MDRPoint) -> MDRPoint: x, y = point[0]-self._c_off[0], point[1]-self._c_off[1] if x!=0 or y!=0: cos_r, sin_r = cos(self._rot), sin(self._rot); x, y = x*cos_r-y*sin_r, x*sin_r+y*cos_r return x+self._n_off[0], y+self._n_off[1] def mdr_normalize_vertical_rotation(rot: float) -> float: while rot >= pi: rot -= pi; while rot < 0: rot += pi; return rot def _mdr_get_rectangle_angles(rect: MDRRectangle) -> tuple[list[float], list[float]] | None: h_angs, v_angs = [], [] for i, (p1, p2) in enumerate(rect.segments): dx, dy = p2[0]-p1[0], p2[1]-p1[1]; if abs(dx)<1e-6 and abs(dy)<1e-6: continue; ang = atan2(dy, dx); if ang < 0: ang += pi; if ang < pi*0.25 or ang >= pi*0.75: h_angs.append(ang-pi if ang>=pi*0.75 else ang) else: v_angs.append(ang) if not h_angs or not v_angs: return None return h_angs, v_angs def _mdr_normalize_horizontal_angles(rots: list[float]) -> list[float]: return rots def _mdr_find_median(data: list[float]) -> float: if not data: return 0.0; s_data = sorted(data); n = len(s_data); return s_data[n//2] if n%2==1 else (s_data[n//2-1]+s_data[n//2])/2.0 def _mdr_find_mean(data: list[float]) -> float: return sum(data)/len(data) if data else 0.0 def mdr_calculate_image_rotation(frags: list[MDROcrFragment]) -> float: all_h, all_v = [], []; for f in frags: res = _mdr_get_rectangle_angles(f.rect); if res: h, v = res; all_h.extend(h); all_v.extend(v) if not all_h or not all_v: return 0.0; all_h = _mdr_normalize_horizontal_angles(all_h); all_v = [mdr_normalize_vertical_rotation(a) for a in all_v] med_h, med_v = _mdr_find_median(all_h), _mdr_find_median(all_v); rot_est = ((pi/2 - med_v) - med_h) / 2.0; while rot_est >= pi/2: rot_est -= pi; while rot_est < -pi/2: rot_est += pi; return rot_est def mdr_calculate_rectangle_rotation(rect: MDRRectangle) -> tuple[float, float]: res = _mdr_get_rectangle_angles(rect); if res is None: return 0.0, pi/2.0; h_rots, v_rots = res; h_rots = _mdr_normalize_horizontal_angles(h_rots); v_rots = [mdr_normalize_vertical_rotation(a) for a in v_rots] return _mdr_find_mean(h_rots), _mdr_find_mean(v_rots) # --- MDR ONNX OCR Internals (predict_base.py) --- class _MDR_PredictBase: """Base class for ONNX model prediction components.""" def get_onnx_session(self, model_path: str, use_gpu: bool): try: sess_opts = onnxruntime.SessionOptions(); sess_opts.log_severity_level = 3 providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if use_gpu and 'CUDAExecutionProvider' in onnxruntime.get_available_providers() else ['CPUExecutionProvider'] session = onnxruntime.InferenceSession(model_path, sess_options=sess_opts, providers=providers) print(f" ONNX session loaded: {Path(model_path).name} ({session.get_providers()})") return session except Exception as e: print(f" ERROR loading ONNX session {Path(model_path).name}: {e}") if use_gpu and 'CUDAExecutionProvider' not in onnxruntime.get_available_providers(): print(" CUDAExecutionProvider not available. Check ONNXRuntime-GPU installation and CUDA setup.") raise e def get_output_name(self, sess: onnxruntime.InferenceSession) -> List[str]: return [n.name for n in sess.get_outputs()] def get_input_name(self, sess: onnxruntime.InferenceSession) -> List[str]: return [n.name for n in sess.get_inputs()] def get_input_feed(self, names: List[str], img_np: np.ndarray) -> Dict[str, np.ndarray]: return {name: img_np for name in names} # --- MDR ONNX OCR Internals (operators.py) --- class _MDR_NormalizeImage: def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs): self.scale = np.float32(eval(scale) if isinstance(scale, str) else (scale if scale is not None else 1.0 / 255.0)) mean = mean if mean is not None else [0.485, 0.456, 0.406]; std = std if std is not None else [0.229, 0.224, 0.225] shape = (3, 1, 1) if order == 'chw' else (1, 1, 3); self.mean = np.array(mean).reshape(shape).astype('float32'); self.std = np.array(std).reshape(shape).astype('float32') def __call__(self, data): img = data['image']; img = np.array(img) if isinstance(img, Image) else img; data['image'] = (img.astype('float32') * self.scale - self.mean) / self.std; return data class _MDR_DetResizeForTest: def __init__(self, **kwargs): self.resize_type = 0; self.keep_ratio = False if 'image_shape' in kwargs: self.image_shape = kwargs['image_shape']; self.resize_type = 1; self.keep_ratio = kwargs.get('keep_ratio', False) elif 'limit_side_len' in kwargs: self.limit_side_len = kwargs['limit_side_len']; self.limit_type = kwargs.get('limit_type', 'min') elif 'resize_long' in kwargs: self.resize_type = 2; self.resize_long = kwargs.get('resize_long', 960) else: self.limit_side_len = 736; self.limit_type = 'min' def __call__(self, data): img = data['image']; src_h, src_w, _ = img.shape if src_h + src_w < 64: img = self._pad(img) if self.resize_type == 0: img, ratios = self._resize0(img) elif self.resize_type == 2: img, ratios = self._resize2(img) else: img, ratios = self._resize1(img) if img is None: return None data['image'] = img; data['shape'] = np.array([src_h, src_w, ratios[0], ratios[1]]); return data def _pad(self, im, v=0): h,w,c=im.shape; p=np.zeros((max(32,h),max(32,w),c),np.uint8)+v; p[:h,:w,:]=im; return p def _resize1(self, img): rh,rw=self.image_shape; oh,ow=img.shape[:2]; if self.keep_ratio: rw=ow*rh/oh; N=math.ceil(rw/32); rw=N*32; r_h,r_w=float(rh)/oh,float(rw)/ow; img=cv2.resize(img,(int(rw),int(rh))); return img,[r_h,r_w] def _resize0(self, img): lsl=self.limit_side_len; h,w,_=img.shape; r=1.0; if self.limit_type=='max': r=float(lsl)/max(h,w) if max(h,w)>lsl else 1.0; elif self.limit_type=='min': r=float(lsl)/min(h,w) if min(h,w) score: continue try: box = self._unclip(pts, self.unclip_r); except: continue if len(box)>1: continue; box = box.reshape(-1,2) _, sside = self._get_mini_boxes(box.reshape((-1,1,2))); if sside < self.min_sz+2: continue box = np.array(box); box[:,0]=np.clip(np.round(box[:,0]/w*dw),0,dw); box[:,1]=np.clip(np.round(box[:,1]/h*dh),0,dh) boxes.append(box.tolist()); scores.append(score) return boxes, scores def _boxes_from_bitmap(self, pred, bmp, dw, dh): h, w = bmp.shape; contours, _ = cv2.findContours((bmp*255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) num_contours = min(len(contours), self.max_cand); boxes, scores = [], [] for i in range(num_contours): contour = contours[i]; pts, sside = self._get_mini_boxes(contour); if sside < self.min_sz: continue pts = np.array(pts); score = self._box_score_fast(pred, pts.reshape(-1,2)) if self.score_m=="fast" else self._box_score_slow(pred, contour) if self.box_thresh > score: continue try: box = self._unclip(pts, self.unclip_r).reshape(-1,1,2) except: continue box, sside = self._get_mini_boxes(box); if sside < self.min_sz+2: continue box = np.array(box); box[:,0]=np.clip(np.round(box[:,0]/w*dw),0,dw); box[:,1]=np.clip(np.round(box[:,1]/h*dh),0,dh) boxes.append(box.astype("int32")); scores.append(score) return np.array(boxes, dtype="int32"), scores def _unclip(self, box, ratio): poly = Polygon(box); dist = poly.area*ratio/poly.length; offset = pyclipper.PyclipperOffset(); offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) expanded = offset.Execute(dist); if not expanded: raise ValueError("Unclip failed"); return np.array(expanded[0]) def _get_mini_boxes(self, contour): bb = cv2.minAreaRect(contour); pts = sorted(list(cv2.boxPoints(bb)), key=lambda x:x[0]) i1,i4 = (0,1) if pts[1][1]>pts[0][1] else (1,0); i2,i3 = (2,3) if pts[3][1]>pts[2][1] else (3,2) box = [pts[i1], pts[i2], pts[i3], pts[i4]]; return box, min(bb[1]) def _box_score_fast(self, bmp, box): h,w = bmp.shape[:2]; xmin=np.clip(np.floor(box[:,0].min()).astype("int32"),0,w-1); xmax=np.clip(np.ceil(box[:,0].max()).astype("int32"),0,w-1) ymin=np.clip(np.floor(box[:,1].min()).astype("int32"),0,h-1); ymax=np.clip(np.ceil(box[:,1].max()).astype("int32"),0,h-1) mask = np.zeros((ymax-ymin+1, xmax-xmin+1), dtype=np.uint8); box[:,0]-=xmin; box[:,1]-=ymin cv2.fillPoly(mask, box.reshape(1,-1,2).astype("int32"), 1); return cv2.mean(bmp[ymin:ymax+1, xmin:xmax+1], mask)[0] if np.sum(mask)>0 else 0.0 def _box_score_slow(self, bmp, contour): # Not used if fast h,w = bmp.shape[:2]; contour = np.reshape(contour.copy(),(-1,2)); xmin=np.clip(np.min(contour[:,0]),0,w-1); xmax=np.clip(np.max(contour[:,0]),0,w-1) ymin=np.clip(np.min(contour[:,1]),0,h-1); ymax=np.clip(np.max(contour[:,1]),0,h-1); mask=np.zeros((ymax-ymin+1,xmax-xmin+1),dtype=np.uint8) contour[:,0]-=xmin; contour[:,1]-=ymin; cv2.fillPoly(mask, contour.reshape(1,-1,2).astype("int32"), 1); return cv2.mean(bmp[ymin:ymax+1, xmin:xmax+1], mask)[0] if np.sum(mask)>0 else 0.0 def __call__(self, outs_dict, shape_list): pred = outs_dict['maps'][:,0,:,:]; seg = pred > self.thresh; boxes_batch = [] for batch_idx in range(pred.shape[0]): sh, sw, _, _ = shape_list[batch_idx]; mask = cv2.dilate(np.array(seg[batch_idx]).astype(np.uint8), self.dila_k) if self.dila_k is not None else seg[batch_idx] if self.box_t=='poly': boxes, _ = self._polygons_from_bitmap(pred[batch_idx], mask, sw, sh) elif self.box_t=='quad': boxes, _ = self._boxes_from_bitmap(pred[batch_idx], mask, sw, sh) else: raise ValueError("box_type must be 'quad' or 'poly'") boxes_batch.append({'points': boxes}) return boxes_batch # --- MDR ONNX OCR Internals (predict_det.py) --- class _MDR_TextDetector(_MDR_PredictBase): def __init__(self, args): super().__init__(); self.args = args pre_ops = [{'DetResizeForTest': {'limit_side_len': args.det_limit_side_len, 'limit_type': args.det_limit_type}}, {'NormalizeImage': {'std': [0.229,0.224,0.225], 'mean': [0.485,0.456,0.406], 'scale': '1./255.', 'order': 'hwc'}}, {'ToCHWImage': None}, {'KeepKeys': {'keep_keys': ['image', 'shape']}}] self.pre_op = mdr_ocr_create_operators(pre_ops) post_params = {'thresh': args.det_db_thresh, 'box_thresh': args.det_db_box_thresh, 'max_candidates': 1000, 'unclip_ratio': args.det_db_unclip_ratio, 'use_dilation': args.use_dilation, 'score_mode': args.det_db_score_mode, 'box_type': args.det_box_type} self.post_op = _MDR_DBPostProcess(**post_params) self.sess = self.get_onnx_session(args.det_model_dir, args.use_gpu) self.input_name = self.get_input_name(self.sess); self.output_name = self.get_output_name(self.sess) def _order_pts(self, pts): r=np.zeros((4,2),dtype="float32"); s=pts.sum(axis=1); r[0]=pts[np.argmin(s)]; r[2]=pts[np.argmax(s)]; tmp=np.delete(pts,(np.argmin(s),np.argmax(s)),axis=0); d=np.diff(np.array(tmp),axis=1); r[1]=tmp[np.argmin(d)]; r[3]=tmp[np.argmax(d)]; return r def _clip_pts(self, pts, h, w): pts[:,0]=np.clip(pts[:,0],0,w-1); pts[:,1]=np.clip(pts[:,1],0,h-1); return pts def _filter_quad(self, boxes, shape): h,w=shape[0:2]; new_boxes=[]; for box in boxes: box=np.array(box) if isinstance(box,list) else box; box=self._order_pts(box); box=self._clip_pts(box,h,w); rw=int(np.linalg.norm(box[0]-box[1])); rh=int(np.linalg.norm(box[0]-box[3])); if rw<=3 or rh<=3: continue; new_boxes.append(box); return np.array(new_boxes) def _filter_poly(self, boxes, shape): h,w=shape[0:2]; new_boxes=[]; for box in boxes: box=np.array(box) if isinstance(box,list) else box; box=self._clip_pts(box,h,w); if Polygon(box).area<10: continue; new_boxes.append(box); return np.array(new_boxes) def __call__(self, img): ori_im = img.copy(); data = {"image": img}; data = mdr_ocr_transform(data, self.pre_op) if data is None: return None; img, shape_list = data; if img is None: return None; img = np.expand_dims(img, axis=0); shape_list = np.expand_dims(shape_list, axis=0); img = img.copy() inputs = self.get_input_feed(self.input_name, img); outputs = self.sess.run(self.output_name, input_feed=inputs) preds = {"maps": outputs[0]}; post_res = self.post_op(preds, shape_list); boxes = post_res[0]['points'] return self._filter_poly(boxes, ori_im.shape) if self.args.det_box_type=='poly' else self._filter_quad(boxes, ori_im.shape) # --- MDR ONNX OCR Internals (cls_postprocess.py) --- class _MDR_ClsPostProcess: def __init__(self, label_list=None, **kwargs): self.labels = label_list if label_list else {0:'0', 1:'180'} def __call__(self, preds, label=None, *args, **kwargs): preds = np.array(preds) if not isinstance(preds, np.ndarray) else preds; idxs = preds.argmax(axis=1) return [(self.labels[idx], float(preds[i,idx])) for i,idx in enumerate(idxs)] # --- MDR ONNX OCR Internals (predict_cls.py) --- class _MDR_TextClassifier(_MDR_PredictBase): def __init__(self, args): super().__init__(); self.shape = tuple(map(int, args.cls_image_shape.split(','))) if isinstance(args.cls_image_shape, str) else args.cls_image_shape self.batch_num = args.cls_batch_num; self.thresh = args.cls_thresh; self.post_op = _MDR_ClsPostProcess(label_list=args.label_list) self.sess = self.get_onnx_session(args.cls_model_dir, args.use_gpu); self.input_name = self.get_input_name(self.sess); self.output_name = self.get_output_name(self.sess) def _resize_norm(self, img): imgC,imgH,imgW = self.shape; h,w = img.shape[:2]; r=w/float(h) if h>0 else 0; rw=int(math.ceil(imgH*r)); rw=min(rw,imgW) resized = cv2.resize(img,(rw,imgH)); resized = resized.astype("float32") if imgC==1: resized = resized/255.0; resized = resized[np.newaxis,:] else: resized = resized.transpose((2,0,1))/255.0 resized -= 0.5; resized /= 0.5; padding = np.zeros((imgC,imgH,imgW),dtype=np.float32); padding[:,:,0:rw]=resized; return padding def __call__(self, img_list): if not img_list: return img_list, []; img_list_cp = copy.deepcopy(img_list); num = len(img_list_cp) ratios = [img.shape[1]/float(img.shape[0]) if img.shape[0]>0 else 0 for img in img_list_cp]; indices = np.argsort(np.array(ratios)) results = [["",0.0]]*num; batch_n = self.batch_num for start in range(0, num, batch_n): end = min(num, start+batch_n); batch = [] for i in range(start, end): batch.append(self._resize_norm(img_list_cp[indices[i]])[np.newaxis,:]) if not batch: continue; batch = np.concatenate(batch, axis=0).copy() inputs = self.get_input_feed(self.input_name, batch); outputs = self.sess.run(self.output_name, input_feed=inputs) cls_out = self.post_op(outputs[0]) for i in range(len(cls_out)): orig_idx = indices[start+i]; label, score = cls_out[i]; results[orig_idx] = [label, score] if "180" in label and score > self.thresh: img_list[orig_idx] = cv2.rotate(img_list[orig_idx], cv2.ROTATE_180) return img_list, results # --- MDR ONNX OCR Internals (rec_postprocess.py) --- class _MDR_BaseRecLabelDecode: def __init__(self, char_path=None, use_space=False): self.beg, self.end, self.rev = "sos", "eos", False; self.chars = [] if char_path is None: self.chars = list("0123456789abcdefghijklmnopqrstuvwxyz") else: try: with open(char_path,"rb") as f: self.chars=[l.decode("utf-8").strip("\n\r") for l in f] if use_space: self.chars.append(" ") if any("\u0600"<=c<="\u06FF" for c in self.chars): self.rev=True except FileNotFoundError: print(f"Warn: Dict not found {char_path}"); self.chars=list("0123456789abcdefghijklmnopqrstuvwxyz"); if use_space: self.chars.append(" ") d_char = self.add_special_char(list(self.chars)); self.dict={c:i for i,c in enumerate(d_char)}; self.character=d_char def add_special_char(self, chars): return chars def get_ignored_tokens(self): return [] def _reverse(self, pred): res=[]; cur=""; for c in pred: if not re.search("[a-zA-Z0-9 :*./%+-]",c): res.extend([cur,c] if cur!="" else [c]); cur="" else: cur+=c; if cur!="": res.append(cur); return "".join(res[::-1]) def decode(self, idxs, probs=None, remove_dup=False): res=[]; ignored=self.get_ignored_tokens(); bs=len(idxs) for b_idx in range(bs): sel=np.ones(len(idxs[b_idx]),dtype=bool); if remove_dup: sel[1:]=idxs[b_idx][1:]!=idxs[b_idx][:-1] for ig_tok in ignored: sel &= idxs[b_idx]!=ig_tok char_l = [self.character[tid] for tid in idxs[b_idx][sel] if 0<=tid0 else 0 for img in img_list] indices=np.argsort(np.array(ratios)); results=[["",0.0]]*num; batch_n=self.batch_num for start in range(0, num, batch_n): end=min(num, start+batch_n); batch=[]; max_r_batch=0 for i in range(start, end): h,w=img_list[indices[i]].shape[0:2]; if h>0: max_r_batch=max(max_r_batch, w/float(h)) for i in range(start, end): batch.append(self._resize_norm(img_list[indices[i]], max_r_batch)[np.newaxis,:]) if not batch: continue; batch=np.concatenate(batch, axis=0).copy() inputs=self.get_input_feed(self.input_name, batch); outputs=self.sess.run(self.output_name, input_feed=inputs) rec_out=self.post_op(outputs[0]) for i in range(len(rec_out)): results[indices[start+i]]=rec_out[i] return results # --- MDR ONNX OCR System (predict_system.py) --- class _MDR_TextSystem: def __init__(self, args): class ArgsObject: # Helper to access dict args with dot notation def __init__(self, **entries): self.__dict__.update(entries) if isinstance(args, dict): args = ArgsObject(**args) self.args = args self.detector = _MDR_TextDetector(args) self.recognizer = _MDR_TextRecognizer(args) self.use_cls = getattr(args, 'use_angle_cls', True) self.drop_score = getattr(args, 'drop_score', 0.5) self.classifier = _MDR_TextClassifier(args) if self.use_cls else None self.crop_idx = 0; self.save_crop = getattr(args, 'save_crop_res', False); self.crop_dir = getattr(args, 'crop_res_save_dir', "./output/mdr_crop_res") def _sort_boxes(self, boxes): if boxes is None or len(boxes)==0: return [] def key(box): min_y=min(p[1] for p in box); min_x=min(p[0] for p in box); return (min_y, min_x) try: return list(sorted(boxes, key=key)) except: return list(boxes) # Fallback def __call__(self, img, classify=True): ori_im = img.copy(); boxes = self.detector(img) if boxes is None or len(boxes)==0: return [], [] boxes = self._sort_boxes(boxes); crops = [] for b in boxes: try: crops.append(mdr_get_rotated_crop(ori_im, b)) # Use renamed util except: crops.append(None) valid_idxs = [i for i,c in enumerate(crops) if c is not None]; if not valid_idxs: return [], [] crops = [crops[i] for i in valid_idxs]; boxes = [boxes[i] for i in valid_idxs] if self.use_cls and self.classifier and classify: try: crops, _ = self.classifier(crops) # Ignore cls results, just use rotated crops except Exception as e: print(f"Classifier error: {e}") try: rec_res = self.recognizer(crops) except Exception as e: print(f"Recognizer error: {e}"); return boxes, [["",0.0]]*len(boxes) final_boxes, final_rec = [], [] for box, res in zip(boxes, rec_res): txt, score = res; if score >= self.drop_score: final_boxes.append(box); final_rec.append(res) if self.save_crop: self._save_crops(crops, rec_res) return final_boxes, final_rec def _save_crops(self, crops, recs): mdr_ensure_directory(self.crop_dir); num = len(crops) for i in range(num): txt, score = recs[i]; safe=re.sub(r'\W+', '_', txt)[:20]; fname=f"crop_{self.crop_idx+i}_{safe}_{score:.2f}.jpg"; cv2.imwrite(os.path.join(self.crop_dir, fname), crops[i]) self.crop_idx += num # --- MDR ONNX OCR Utilities (onnxocr/utils.py) --- def mdr_get_rotated_crop(img, points): """Crops and perspective-transforms a quadrilateral region.""" pts = np.array(points, dtype="float32"); assert len(pts)==4 w = int(max(np.linalg.norm(pts[0]-pts[1]), np.linalg.norm(pts[2]-pts[3]))) h = int(max(np.linalg.norm(pts[0]-pts[3]), np.linalg.norm(pts[1]-pts[2]))) std = np.float32([[0,0],[w,0],[w,h],[0,h]]) M = cv2.getPerspectiveTransform(pts, std) dst = cv2.warpPerspective(img, M, (w,h), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC) dh, dw = dst.shape[0:2] if dh>0 and dw>0 and dh*1.0/dw >= 1.5: dst = cv2.rotate(dst, cv2.ROTATE_90_CLOCKWISE) return dst def mdr_get_min_area_crop(img, points): """Crops the minimum area rectangle containing the points.""" bb = cv2.minAreaRect(np.array(points).astype(np.int32)); box_pts = cv2.boxPoints(bb) return mdr_get_rotated_crop(img, box_pts) # --- MDR Layout Processing (overlap.py) --- _MDR_INCLUDES_MIN_RATE = 0.99 class _MDR_OverlapMatrixContext: def __init__(self, layouts: list[MDRLayoutElement]): length = len(layouts); self.polys: list[Polygon|None] = [] for l in layouts: try: p = Polygon(l.rect); self.polys.append(p if p.is_valid else None) except: self.polys.append(None) self.matrix = [[0.0]*length for _ in range(length)]; self.removed = set() for i in range(length): p1 = self.polys[i]; if p1 is None: continue; self.matrix[i][i] = 1.0 for j in range(i+1, length): p2 = self.polys[j]; if p2 is None: continue r_ij = self._rate(p1, p2); r_ji = self._rate(p2, p1); self.matrix[i][j]=r_ij; self.matrix[j][i]=r_ji def _rate(self, p1: Polygon, p2: Polygon) -> float: # Rate p1 covers p2 try: inter = p1.intersection(p2); except: return 0.0 if inter.is_empty or inter.area < 1e-6: return 0.0 _, _, ix1, iy1 = inter.bounds; iw, ih = ix1-inter.bounds[0], iy1-inter.bounds[1] _, _, px1, py1 = p2.bounds; pw, ph = px1-p2.bounds[0], py1-p2.bounds[1] if pw < 1e-6 or ph < 1e-6: return 0.0 wr = min(iw/pw, 1.0); hr = min(ih/ph, 1.0); return (wr+hr)/2.0 def others(self, idx: int): for i, r in enumerate(self.matrix[idx]): if i != idx and i not in self.removed: yield r def includes(self, idx: int): # Layouts included BY idx for i, r in enumerate(self.matrix[idx]): if i != idx and i not in self.removed and r >= _MDR_INCLUDES_MIN_RATE: if self.matrix[i][idx] < _MDR_INCLUDES_MIN_RATE: yield i def mdr_remove_overlap_layouts(layouts: list[MDRLayoutElement]) -> list[MDRLayoutElement]: if not layouts: return []; ctx = _MDR_OverlapMatrixContext(layouts); prev_removed = -1 while len(ctx.removed) != prev_removed: prev_removed = len(ctx.removed); current_removed = set() for i in range(len(layouts)): if i in ctx.removed or i in current_removed: continue; li = layouts[i]; pi = ctx.polys[i] if pi is None: current_removed.add(i); continue; contained = False for j in range(len(layouts)): if i==j or j in ctx.removed or j in current_removed: continue if ctx.matrix[j][i] >= _MDR_INCLUDES_MIN_RATE and ctx.matrix[i][j] < _MDR_INCLUDES_MIN_RATE: contained=True; break if contained: current_removed.add(i); continue; contained_by_i = list(ctx.includes(i)) if contained_by_i: for j in contained_by_i: if j not in ctx.removed and j not in current_removed: li.fragments.extend(layouts[j].fragments); current_removed.add(j) li.fragments.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0])) ctx.removed.update(current_removed) return [l for i, l in enumerate(layouts) if i not in ctx.removed] def _mdr_split_fragments_into_lines(frags: list[MDROcrFragment]) -> Generator[list[MDROcrFragment], None, None]: if not frags: return; frags.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0])); group, y_sum, h_sum = [], 0.0, 0.0 for f in frags: _, y1, _, y2 = f.rect.wrapper; h = y2-y1; med_y = (y1+y2)/2.0 if h <= 0: continue; if not group: group.append(f); y_sum, h_sum = med_y, h else: g_len = len(group); avg_med_y, avg_h = y_sum/g_len, h_sum/g_len max_dev = avg_h * 0.40 if abs(med_y - avg_med_y) > max_dev: yield group; group, y_sum, h_sum = [f], med_y, h else: group.append(f); y_sum += med_y; h_sum += h if group: yield group def mdr_merge_fragments_into_lines(orig_frags: list[MDROcrFragment]) -> list[MDROcrFragment]: merged = []; for group in _mdr_split_fragments_into_lines(orig_frags): if not group: continue; if len(group) == 1: merged.append(group[0]); continue; group.sort(key=lambda f: f.rect.lt[0]); min_order = min(f.order for f in group if hasattr(f, 'order')) if group else 0 texts, rank_w, txt_len = [], 0.0, 0 x1, y1, x2, y2 = float("inf"), float("inf"), float("-inf"), float("-inf") for f in group: fx1, fy1, fx2, fy2 = f.rect.wrapper; x1,y1,x2,y2 = min(x1,fx1), min(y1,fy1), max(x2,fx2), max(y2,fy2) t = f.text; l = len(t); if l > 0: texts.append(t); rank_w += f.rank*l; txt_len += l if txt_len == 0: continue; m_txt = " ".join(texts); m_rank = rank_w/txt_len if txt_len>0 else 0.0 m_rect = MDRRectangle(lt=(x1,y1), rt=(x2,y1), lb=(x1,y2), rb=(x2,y2)) merged.append(MDROcrFragment(order=min_order, text=m_txt, rank=m_rank, rect=m_rect)) merged.sort(key=lambda f: (f.order, f.rect.lt[1], f.rect.lt[0])) for i, f in enumerate(merged): f.order = i return merged # --- MDR Layout Processing (ocr_corrector.py) --- _MDR_CORRECTION_MIN_OVERLAP = 0.5 def mdr_correct_layout_fragments(ocr_engine: 'MDROcrEngine', source_img: Image, layout: MDRLayoutElement): if not layout.fragments: return; try: x1,y1,x2,y2 = layout.rect.wrapper; margin=5; crop_box=(max(0,round(x1)-margin), max(0,round(y1)-margin), min(source_img.width,round(x2)+margin), min(source_img.height,round(y2)+margin)) if crop_box[0]>=crop_box[2] or crop_box[1]>=crop_box[3]: return; cropped = source_img.crop(crop_box); off_x, off_y = crop_box[0], crop_box[1] except Exception as e: print(f"Correct: Crop error: {e}"); return; try: cropped_np = np.array(cropped.convert("RGB"))[:,:,::-1]; new_frags_local = list(ocr_engine.find_text_fragments(cropped_np)) except Exception as e: print(f"Correct: OCR error: {e}"); return; new_frags_global = [] for f in new_frags_local: r=f.rect; lt,rt,lb,rb=r.lt,r.rt,r.lb,r.rb; f.rect=MDRRectangle(lt=(lt[0]+off_x,lt[1]+off_y), rt=(rt[0]+off_x,rt[1]+off_y), lb=(lb[0]+off_x,lb[1]+off_y), rb=(rb[0]+off_x,rb[1]+off_y)); new_frags_global.append(f) orig_frags = layout.fragments; matched, unmatched_orig = [], []; used_new = set() for i, orig_f in enumerate(orig_frags): best_j, best_rate = -1, -1.0; try: poly_o = Polygon(orig_f.rect); except: continue; if not poly_o.is_valid: continue; for j, new_f in enumerate(new_frags_global): if j in used_new: continue; try: poly_n = Polygon(new_f.rect); except: continue; if not poly_n.is_valid: continue; try: inter=poly_o.intersection(poly_n); union=poly_o.union(poly_n) except: continue; rate = inter.area / union.area if union.area > 1e-6 else 0.0 if rate > _MDR_CORRECTION_MIN_OVERLAP and rate > best_rate: best_rate = rate; best_j = j if best_j != -1: matched.append((orig_f, new_frags_global[best_j])); used_new.add(best_j) else: unmatched_orig.append(orig_f) unmatched_new = [f for j, f in enumerate(new_frags_global) if j not in used_new] final = [n if n.rank >= o.rank else o for o, n in matched]; final.extend(unmatched_orig); final.extend(unmatched_new) layout.fragments = final; layout.fragments.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0])) # --- MDR OCR Engine (ocr.py) --- _MDR_OCR_MODELS = {"det": ("ppocrv4","det","det.onnx"), "cls": ("ppocrv4","cls","cls.onnx"), "rec": ("ppocrv4","rec","rec.onnx"), "keys": ("ch_ppocr_server_v2.0","ppocr_keys_v1.txt")} _MDR_OCR_URL_BASE = "https://huggingface.co/moskize/OnnxOCR/resolve/main/" @dataclass class _MDR_ONNXParams: # Simplified container use_gpu: bool; det_model_dir: str; cls_model_dir: str; rec_model_dir: str; rec_char_dict_path: str use_angle_cls: bool=True; rec_image_shape: str="3,48,320"; cls_image_shape: str="3,48,192"; cls_batch_num: int=6; cls_thresh: float=0.9; label_list: list=['0','180'] det_algorithm: str="DB"; det_limit_side_len: int=960; det_limit_type: str='max'; det_db_thresh: float=0.3; det_db_box_thresh: float=0.6; det_db_unclip_ratio: float=1.5 use_dilation: bool=False; det_db_score_mode: str='fast'; det_box_type: str='quad'; rec_batch_num: int=6; drop_score: float=0.5; rec_algorithm: str="SVTR_LCNet"; use_space_char: bool=True save_crop_res: bool=False; crop_res_save_dir: str="./output/mdr_crop_res"; show_log: bool=False; use_onnx: bool=True class MDROcrEngine: """Handles OCR detection and recognition using ONNX models.""" def __init__(self, device: Literal["cpu", "cuda"], model_dir_path: str): self._device = device; self._model_dir = mdr_ensure_directory(model_dir_path) self._text_system: _MDR_TextSystem | None = None; self._onnx_params: _MDR_ONNXParams | None = None self._ensure_models(); self._get_system() # Init on creation def _ensure_models(self): for key, parts in _MDR_OCR_MODELS.items(): fp = Path(self._model_dir) / Path(*parts) if not fp.exists(): print(f"Downloading MDR OCR model: {fp.name}..."); url = _MDR_OCR_URL_BASE + "/".join(parts); mdr_download_model(url, fp) def _get_system(self) -> _MDR_TextSystem | None: if self._text_system is None: paths = {k: str(Path(self._model_dir)/Path(*p)) for k,p in _MDR_OCR_MODELS.items()} self._onnx_params = _MDR_ONNXParams(use_gpu=(self._device=="cuda"), det_model_dir=paths["det"], cls_model_dir=paths["cls"], rec_model_dir=paths["rec"], rec_char_dict_path=paths["keys"]) try: self._text_system = _MDR_TextSystem(self._onnx_params); print(f"MDR OCR System initialized.") except Exception as e: print(f"ERROR initializing MDR OCR System: {e}"); self._text_system = None return self._text_system def find_text_fragments(self, image_np: np.ndarray) -> Generator[MDROcrFragment, None, None]: """Finds and recognizes text fragments in a NumPy image (BGR).""" system = self._get_system() if system is None: print("MDR OCR System unavailable."); return img = self._preprocess(image_np) try: boxes, recs = system(img) except Exception as e: print(f"MDR OCR prediction error: {e}"); return if not boxes or not recs: return for box_pts, (txt, conf) in zip(boxes, recs): if not txt or mdr_is_whitespace(txt) or conf < 0.1: continue pts = [(float(p[0]), float(p[1])) for p in box_pts] if len(pts)==4: r=MDRRectangle(lt=pts[0], rt=pts[1], rb=pts[2], lb=pts[3]); if r.is_valid and r.area>1: yield MDROcrFragment(order=-1, text=txt, rank=float(conf), rect=r) def _preprocess(self, img: np.ndarray) -> np.ndarray: if len(img.shape)==3 and img.shape[2]==4: a=img[:,:,3]/255.0; bg=(255,255,255); new=np.zeros_like(img[:,:,:3]); [setattr(new[:,:,i], 'flags.writeable', True) for i in range(3)]; [np.copyto(new[:,:,i], (bg[i]*(1-a)+img[:,:,i]*a)) for i in range(3)]; img=new.astype(np.uint8) elif len(img.shape)==2: img=cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) elif not (len(img.shape)==3 and img.shape[2]==3): raise ValueError("Unsupported image format") return img # --- MDR Layout Reading Internals (layoutreader.py) --- _MDR_MAX_LEN = 510; _MDR_CLS_ID = 0; _MDR_SEP_ID = 2; _MDR_PAD_ID = 1 def mdr_boxes_to_reader_inputs(boxes: List[List[int]], max_len=_MDR_MAX_LEN) -> Dict[str, torch.Tensor]: t_boxes = boxes[:max_len]; i_boxes = [[0,0,0,0]] + t_boxes + [[0,0,0,0]] i_ids = [_MDR_CLS_ID] + [_MDR_PAD_ID]*len(t_boxes) + [_MDR_SEP_ID] a_mask = [1]*len(i_ids); pad_len = (max_len+2) - len(i_ids) if pad_len > 0: i_boxes.extend([[0,0,0,0]]*pad_len); i_ids.extend([_MDR_PAD_ID]*pad_len); a_mask.extend([0]*pad_len) return {"bbox": torch.tensor([i_boxes]), "input_ids": torch.tensor([i_ids]), "attention_mask": torch.tensor([a_mask])} def mdr_prepare_reader_inputs(inputs: Dict[str, torch.Tensor], model: LayoutLMv3ForTokenClassification) -> Dict[str, torch.Tensor]: return {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()} def mdr_parse_reader_logits(logits: torch.Tensor, length: int) -> List[int]: if length == 0: return []; rel_logits = logits[1:length+1, :length]; orders = rel_logits.argmax(dim=1).tolist() while True: conflicts = defaultdict(list); [conflicts[order].append(idx) for idx, order in enumerate(orders)] conflicting_orders = {o: idxs for o, idxs in conflicts.items() if len(idxs) > 1} if not conflicting_orders: break for order, idxs in conflicting_orders.items(): best_idx, max_logit = -1, -float('inf') for idx in idxs: logit = rel_logits[idx, order].item(); if logit > max_logit: max_logit, best_idx = logit, idx for idx in idxs: if idx != best_idx: orig_logit = rel_logits[idx, order].item(); rel_logits[idx, order] = -float('inf') orders[idx] = rel_logits[idx, :].argmax().item(); rel_logits[idx, order] = orig_logit return orders # --- MDR Layout Reading Engine (layout_order.py) --- @dataclass class _MDR_ReaderBBox: layout_index: int; fragment_index: int; virtual: bool; order: int; value: tuple[float, float, float, float] class MDRLayoutReader: """Determines reading order of layout elements using LayoutLMv3.""" def __init__(self, model_path: str): self._model_path = model_path; self._model: LayoutLMv3ForTokenClassification | None = None self._device = "cuda" if torch.cuda.is_available() else "cpu" def _get_model(self) -> LayoutLMv3ForTokenClassification | None: if self._model is None: cache = mdr_ensure_directory(self._model_path); name = "microsoft/layoutlmv3-base"; h_path = os.path.join(cache, "models--hantian--layoutreader") local = os.path.exists(h_path); load_p = h_path if local else name try: self._model = LayoutLMv3ForTokenClassification.from_pretrained(load_p, cache_dir=cache, local_files_only=local, num_labels=_MDR_MAX_LEN+1) self._model.to(self._device); self._model.eval(); print(f"MDR LayoutReader loaded on {self._device}.") except Exception as e: print(f"ERROR loading MDR LayoutReader: {e}"); self._model = None return self._model def determine_reading_order(self, layouts: list[MDRLayoutElement], size: tuple[int, int]) -> list[MDRLayoutElement]: w, h = size; if w<=0 or h<=0 or not layouts: return layouts; model = self._get_model() if model is None: # Fallback geometric sort layouts.sort(key=lambda l: (l.rect.lt[1], l.rect.lt[0])); nfo = 0 for l in layouts: l.fragments.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0])); [setattr(f,'order',i+nfo) for i,f in enumerate(l.fragments)]; nfo += len(l.fragments) return layouts bbox_list = self._prepare_bboxes(layouts, w, h) if bbox_list is None or len(bbox_list) == 0: return layouts l_size = 1000.0; xs, ys = l_size/float(w), l_size/float(h) scaled_bboxes = [] for bbox in bbox_list: x0, y0, x1, y1 = bbox.value sx0, sy0 = max(0, min(l_size-1, round(x0*xs))), max(0, min(l_size-1, round(y0*ys))) sx1, sy1 = max(0, min(l_size-1, round(x1*xs))), max(0, min(l_size-1, round(y1*ys))) scaled_bboxes.append([min(sx0, sx1), min(sy0, sy1), max(sx0, sx1), max(sy0, sy1)]) orders = [] try: with torch.no_grad(): inputs = mdr_boxes_to_reader_inputs(scaled_bboxes); inputs = mdr_prepare_reader_inputs(inputs, model) logits = model(**inputs).logits.cpu().squeeze(0); orders = mdr_parse_reader_logits(logits, len(bbox_list)) except Exception as e: print(f"MDR LayoutReader prediction error: {e}"); return layouts # Fallback if len(orders) != len(bbox_list): print("MDR LayoutReader order mismatch"); return layouts # Fallback for i, order_idx in enumerate(orders): bbox_list[i].order = order_idx return self._apply_order(layouts, bbox_list) def _prepare_bboxes(self, layouts: list[MDRLayoutElement], w: int, h: int) -> list[_MDR_ReaderBBox] | None: line_h = self._estimate_line_h(layouts); bbox_list = [] for i, l in enumerate(layouts): if l.cls == MDRLayoutClass.PLAIN_TEXT and l.fragments: [bbox_list.append(_MDR_ReaderBBox(i, j, False, -1, f.rect.wrapper)) for j, f in enumerate(l.fragments)] else: bbox_list.extend(self._gen_virtual(l, i, line_h, w, h)) if len(bbox_list) > _MDR_MAX_LEN: print(f"Too many boxes ({len(bbox_list)}>{_MDR_MAX_LEN})"); return None bbox_list.sort(key=lambda b: (b.value[1], b.value[0])); return bbox_list def _apply_order(self, layouts: list[MDRLayoutElement], bbox_list: list[_MDR_ReaderBBox]) -> list[MDRLayoutElement]: layout_map = defaultdict(list); [layout_map[b.layout_index].append(b) for b in bbox_list] layout_orders = [(idx, self._median([b.order for b in bboxes])) for idx, bboxes in layout_map.items() if bboxes] layout_orders.sort(key=lambda x: x[1]); sorted_layouts = [layouts[idx] for idx, _ in layout_orders] nfo = 0 for l in sorted_layouts: frags = l.fragments; if not frags: continue; frag_bboxes = [b for b in layout_map[layouts.index(l)] if not b.virtual] if frag_bboxes: idx_to_order = {b.fragment_index: b.order for b in frag_bboxes}; frags.sort(key=lambda f: idx_to_order.get(frags.index(f), float('inf'))) else: frags.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0])) for frag in frags: frag.order = nfo; nfo += 1 return sorted_layouts def _estimate_line_h(self, layouts: list[MDRLayoutElement]) -> float: heights = [f.rect.size[1] for l in layouts for f in l.fragments if f.rect.size[1]>0] return self._median(heights) if heights else 15.0 def _gen_virtual(self, l: MDRLayoutElement, l_idx: int, line_h: float, pw: int, ph: int) -> Generator[_MDR_ReaderBBox, None, None]: x0,y0,x1,y1 = l.rect.wrapper; lh,lw = y1-y0,x1-x0 if lh<=0 or lw<=0 or line_h<=0: yield _MDR_ReaderBBox(l_idx,-1,True,-1,(x0,y0,x1,y1)); return lines = 1 if lh > line_h*1.5: if lh<=ph*0.25 or lw>=pw*0.5: lines=3 elif lw>pw*0.25: lines = 3 if lw>pw*0.4 else 2 elif lw<=pw*0.25: lines = max(1, int(lh/(line_h*1.5))) if lh/lw>1.5 else 2 else: lines = max(1, int(round(lh/line_h))) lines = max(1, lines); act_line_h = lh/lines; cur_y = y0 for i in range(lines): ly0,ly1 = max(0,min(ph,cur_y)), max(0,min(ph,cur_y+act_line_h)); lx0,lx1 = max(0,min(pw,x0)), max(0,min(pw,x1)) if ly1>ly0 and lx1>lx0: yield _MDR_ReaderBBox(l_idx,-1,True,-1,(lx0,ly0,lx1,ly1)) cur_y += act_line_h def _median(self, nums: list[float|int]) -> float: if not nums: return 0.0; s_nums = sorted(nums); n = len(s_nums) return float(s_nums[n//2]) if n%2==1 else float((s_nums[n//2-1]+s_nums[n//2])/2.0) # --- MDR LaTeX Extractor (latex.py) --- class MDRLatexExtractor: """Extracts LaTeX from formula images using pix2tex.""" def __init__(self, model_path: str): self._model_path = model_path; self._model: LatexOCR | None = None self._device = "cuda" if torch.cuda.is_available() else "cpu" def extract(self, image: Image) -> str | None: if LatexOCR is None: return None; image = mdr_expand_image(image, 0.1); model = self._get_model() if model is None: return None; try: with torch.no_grad(): img_rgb = image.convert('RGB') if image.mode!='RGB' else image; latex = model(img_rgb); return latex if latex else None except Exception as e: print(f"MDR LaTeX error: {e}"); return None def _get_model(self) -> LatexOCR | None: if self._model is None and LatexOCR is not None: mdr_ensure_directory(self._model_path); wp, rp, cp = Path(self._model_path)/"weights.pth", Path(self._model_path)/"image_resizer.pth", Path(self._model_path)/"config.yaml" if not wp.exists() or not rp.exists(): print("Downloading MDR LaTeX models..."); self._download() if not cp.exists(): print(f"Warn: MDR LaTeX config not found {self._model_path}") try: args = Munch({"config":str(cp), "checkpoint":str(wp), "device":self._device, "no_cuda":self._device=="cpu", "no_resize":False, "temperature":0.0}); self._model = LatexOCR(args); print(f"MDR LaTeX loaded on {self._device}.") except Exception as e: print(f"ERROR initializing MDR LatexOCR: {e}"); self._model = None return self._model def _download(self): tag = "v0.0.1"; base = f"https://github.com/lukas-blecher/LaTeX-OCR/releases/download/{tag}/"; files = {"weights.pth": base+"weights.pth", "image_resizer.pth": base+"image_resizer.pth"} mdr_ensure_directory(self._model_path); [mdr_download_model(url, Path(self._model_path)/name) for name, url in files.items() if not (Path(self._model_path)/name).exists()] # --- MDR Table Parser (table.py) --- MDRTableOutputFormat = Literal["latex", "markdown", "html"] class MDRTableParser: """Parses table structure/content from images using StructTable model.""" def __init__(self, device: Literal["cpu", "cuda"], model_path: str): self._model: Any | None = None; self._model_path = mdr_ensure_directory(model_path) self._device = device if torch.cuda.is_available() and device=="cuda" else "cpu" self._disabled = self._device == "cpu" if self._disabled: print("Warning: MDR Table parsing requires CUDA. Disabled.") def parse_table_image(self, image: Image, format: MDRTableLayoutParsedFormat) -> str | None: if self._disabled: return None; fmt: MDRTableOutputFormat | None = None if format == MDRTableLayoutParsedFormat.LATEX: fmt="latex" elif format == MDRTableLayoutParsedFormat.MARKDOWN: fmt="markdown" elif format == MDRTableLayoutParsedFormat.HTML: fmt="html" else: return None image = mdr_expand_image(image, 0.05); model = self._get_model() if model is None: return None; try: img_rgb = image.convert('RGB') if image.mode!='RGB' else image with torch.no_grad(): results = model([img_rgb], output_format=fmt) return results[0] if results else None except Exception as e: print(f"MDR Table parsing error: {e}"); return None def _get_model(self): if self._model is None and not self._disabled: try: from struct_eqtable import build_model # Dynamic import name = "U4R/StructTable-InternVL2-1B"; local = any(Path(self._model_path).iterdir()) print(f"Loading MDR StructTable model '{name}'...") model = build_model(model_ckpt=name, max_new_tokens=1024, max_time=30, lmdeploy=False, flash_attn=True, batch_size=1, cache_dir=self._model_path, local_files_only=local) self._model = model.to(self._device); print(f"MDR StructTable loaded on {self._device}.") except ImportError: print("ERROR: struct_eqtable not found."); self._disabled=True; self._model=None except Exception as e: print(f"ERROR loading MDR StructTable: {e}"); self._model=None return self._model # --- MDR Image Optimizer (raw_optimizer.py) --- _MDR_TINY_ROTATION = 0.005 @dataclass class _MDR_RotationContext: to_origin: MDRRotationAdjuster; to_new: MDRRotationAdjuster; fragment_origin_rectangles: list[MDRRectangle] class MDRImageOptimizer: """Handles image rotation detection and coordinate adjustments.""" def __init__(self, raw_image: Image, adjust_points: bool): self._raw = raw_image; self._image = raw_image; self._adjust_points = adjust_points self._fragments: list[MDROcrFragment] = []; self._rotation: float = 0.0; self._rot_ctx: _MDR_RotationContext | None = None @property def image(self) -> Image: return self._image @property def adjusted_image(self) -> Image | None: return self._image if self._rot_ctx is not None else None @property def rotation(self) -> float: return self._rotation @property def image_np(self) -> np.ndarray: img_rgb = np.array(self._raw.convert("RGB")); return cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR) def receive_fragments(self, fragments: list[MDROcrFragment]): self._fragments = fragments; if not fragments: return; self._rotation = mdr_calculate_image_rotation(fragments) if abs(self._rotation) < _MDR_TINY_ROTATION: self._rotation = 0.0; return orig_sz = self._raw.size try: self._image = self._raw.rotate(-np.degrees(self._rotation), resample=PILResampling.BICUBIC, fillcolor=(255,255,255), expand=True) except Exception as e: print(f"Optimizer rotation error: {e}"); self._rotation=0.0; self._image=self._raw; return new_sz = self._image.size self._rot_ctx = _MDR_RotationContext( fragment_origin_rectangles=[f.rect for f in fragments], to_new=MDRRotationAdjuster(orig_sz, new_sz, self._rotation, False), to_origin=MDRRotationAdjuster(orig_sz, new_sz, self._rotation, True)) adj = self._rot_ctx.to_new; [setattr(f, 'rect', MDRRectangle(lt=adj.adjust(r.lt), rt=adj.adjust(r.rt), lb=adj.adjust(r.lb), rb=adj.adjust(r.rb))) for f in fragments if (r:=f.rect)] def finalize_layout_coords(self, layouts: list[MDRLayoutElement]): if self._rot_ctx is None or self._adjust_points: return if len(self._fragments) == len(self._rot_ctx.fragment_origin_rectangles): [setattr(f, 'rect', orig_r) for f, orig_r in zip(self._fragments, self._rot_ctx.fragment_origin_rectangles)] adj = self._rot_ctx.to_origin; [setattr(l, 'rect', MDRRectangle(lt=adj.adjust(r.lt), rt=adj.adjust(r.rt), lb=adj.adjust(r.lb), rb=adj.adjust(r.rb))) for l in layouts if (r:=l.rect)] # --- MDR Image Clipping (clipper.py) --- def mdr_clip_from_image(image: Image, rect: MDRRectangle, wrap_w: float = 0.0, wrap_h: float = 0.0) -> Image: """Clips a potentially rotated rectangle from an image.""" try: h_rot, _ = mdr_calculate_rectangle_rotation(rect); avg_w, avg_h = rect.size if avg_w<=0 or avg_h<=0: return new_image("RGB", (1,1), (255,255,255)) tx, ty = rect.lt; trans_orig = np.array([[1,0,-tx],[0,1,-ty],[0,0,1]]) cos_r, sin_r = cos(-h_rot), sin(-h_rot); rot = np.array([[cos_r,-sin_r,0],[sin_r,cos_r,0],[0,0,1]]) pad_dx, pad_dy = wrap_w/2.0, wrap_h/2.0; trans_pad = np.array([[1,0,pad_dx],[0,1,pad_dy],[0,0,1]]) matrix = trans_pad @ rot @ trans_orig try: inv_matrix = np.linalg.inv(matrix) except np.linalg.LinAlgError: x0,y0,x1,y1=rect.wrapper; return image.crop((round(x0),round(y0),round(x1),round(y1))) p_mat = (inv_matrix[0,0], inv_matrix[0,1], inv_matrix[0,2], inv_matrix[1,0], inv_matrix[1,1], inv_matrix[1,2]) out_w, out_h = ceil(avg_w+wrap_w), ceil(avg_h+wrap_h) return image.transform((out_w, out_h), PILTransform.AFFINE, p_mat, PILResampling.BICUBIC, fillcolor=(255,255,255)) except Exception as e: print(f"MDR Clipping error: {e}"); return new_image("RGB", (10,10), (255,255,255)) def mdr_clip_layout(res: MDRExtractionResult, layout: MDRLayoutElement, wrap_w: float = 0.0, wrap_h: float = 0.0) -> Image: """Clips a layout region from the MDRExtractionResult image.""" img = res.adjusted_image if res.adjusted_image else res.extracted_image return mdr_clip_from_image(img, layout.rect, wrap_w, wrap_h) # --- MDR Debug Plotting (plot.py) --- _MDR_FRAG_COLOR = (0x49, 0xCF, 0xCB, 200); _MDR_LAYOUT_COLORS = { MDRLayoutClass.TITLE: (0x0A,0x12,0x2C,255), MDRLayoutClass.PLAIN_TEXT: (0x3C,0x67,0x90,255), MDRLayoutClass.ABANDON: (0xC0,0xBB,0xA9,180), MDRLayoutClass.FIGURE: (0x5B,0x91,0x3C,255), MDRLayoutClass.FIGURE_CAPTION: (0x77,0xB3,0x54,255), MDRLayoutClass.TABLE: (0x44,0x17,0x52,255), MDRLayoutClass.TABLE_CAPTION: (0x81,0x75,0xA0,255), MDRLayoutClass.TABLE_FOOTNOTE: (0xEF,0xB6,0xC9,255), MDRLayoutClass.ISOLATE_FORMULA: (0xFA,0x38,0x27,255), MDRLayoutClass.FORMULA_CAPTION: (0xFF,0x9D,0x24,255) }; _MDR_DEFAULT_COLOR = (0x80,0x80,0x80,255); _MDR_RGBA = tuple[int,int,int,int] def mdr_plot_layout(image: Image, layouts: Iterable[MDRLayoutElement]) -> None: """Draws layout and fragment boxes onto an image for debugging.""" if not layouts: return; try: l_font, f_font = load_default(size=25), load_default(size=15); draw = ImageDraw.Draw(image, mode="RGBA") except Exception as e: print(f"MDR Plot init error: {e}"); return def _draw_num(pos: MDRPoint, num: int, font: FreeTypeFont, color: _MDR_RGBA): try: x,y=pos; txt=str(num); txt_pos=(round(x)+3, round(y)+1); bbox=draw.textbbox(txt_pos,txt,font=font); bg_rect=(bbox[0]-2,bbox[1]-1,bbox[2]+2,bbox[3]+1); bg_color=(color[0],color[1],color[2],180); draw.rectangle(bg_rect,fill=bg_color); draw.text(txt_pos,txt,font=font,fill=(255,255,255,255)) except Exception as e: print(f"MDR Draw num error: {e}") for i, l in enumerate(layouts): try: l_color = _MDR_LAYOUT_COLORS.get(l.cls, _MDR_DEFAULT_COLOR); draw.polygon([p for p in l.rect], outline=l_color, width=3); _draw_num(l.rect.lt, i+1, l_font, l_color) except Exception as e: print(f"MDR Layout draw error: {e}") for l in layouts: for f in l.fragments: try: draw.polygon([p for p in f.rect], outline=_MDR_FRAG_COLOR, width=1) except Exception as e: print(f"MDR Fragment draw error: {e}") # --- MDR Extraction Engine (DocExtractor.py) --- class MDRExtractionEngine: """Core engine for extracting structured information from a document image.""" def __init__(self, model_dir_path: str, device: Literal["cpu", "cuda"]="cpu", ocr_for_each_layouts: bool=True, extract_formula: bool=True, extract_table_format: MDRTableLayoutParsedFormat|None=None): self._model_dir = model_dir_path; self._device = device if torch.cuda.is_available() else "cpu" self._ocr_each = ocr_for_each_layouts; self._ext_formula = extract_formula; self._ext_table = extract_table_format self._yolo: YOLOv10 | None = None self._ocr_engine = MDROcrEngine(device=self._device, model_dir_path=os.path.join(model_dir_path, "onnx_ocr")) self._table_parser = MDRTableParser(device=self._device, model_path=os.path.join(model_dir_path, "struct_eqtable")) self._latex_extractor = MDRLatexExtractor(model_path=os.path.join(model_dir_path, "latex")) self._layout_reader = MDRLayoutReader(model_path=os.path.join(model_dir_path, "layoutreader")) print(f"MDR Extraction Engine initialized on device: {self._device}") def _get_yolo_model(self) -> YOLOv10 | None: if self._yolo is None and YOLOv10 is not None: bp = Path(self._model_dir)/"yolo"; mdr_ensure_directory(str(bp)); url = "https://huggingface.co/opendatalab/PDF-Extract-Kit-1.0/resolve/main/models/Layout/YOLO/doclayout_yolo_ft.pt"; name = "doclayout_yolo_ft.pt"; mp = bp/name if not mp.exists(): print(f"Downloading MDR YOLO model..."); mdr_download_model(url, mp) try: self._yolo = YOLOv10(str(mp)); print("MDR YOLOv10 loaded.") except Exception as e: print(f"ERROR loading MDR YOLOv10: {e}"); self._yolo = None elif YOLOv10 is None: print("MDR YOLOv10 unavailable.") return self._yolo def analyze_image(self, image: Image, adjust_points: bool=False) -> MDRExtractionResult: """Analyzes a single page image to extract layout and content.""" print(" Engine: Analyzing image..."); optimizer = MDRImageOptimizer(image, adjust_points) print(" Engine: Initial OCR..."); frags = list(self._ocr_engine.find_text_fragments(optimizer.image_np)); print(f" Engine: {len(frags)} fragments found.") optimizer.receive_fragments(frags); frags = optimizer._fragments # Use adjusted fragments print(" Engine: Layout detection..."); yolo = self._get_yolo_model(); raw_layouts = [] if yolo: try: raw_layouts = list(self._run_yolo_detection(optimizer.image, yolo)); print(f" Engine: {len(raw_layouts)} raw layouts found.") except Exception as e: print(f" Engine: YOLO error: {e}") print(" Engine: Matching fragments..."); layouts = self._match_fragments_to_layouts(frags, raw_layouts) print(" Engine: Removing overlaps..."); layouts = mdr_remove_overlap_layouts(layouts); print(f" Engine: {len(layouts)} layouts after overlap removal.") if self._ocr_each and layouts: print(" Engine: OCR correction..."); self._run_ocr_correction(optimizer.image, layouts) print(" Engine: Determining reading order..."); layouts = self._layout_reader.determine_reading_order(layouts, optimizer.image.size) layouts = [l for l in layouts if self._should_keep_layout(l)]; print(f" Engine: {len(layouts)} layouts after filtering.") if self._ext_table or self._ext_formula: print(" Engine: Parsing tables/formulas..."); self._parse_special_layouts(layouts, optimizer) print(" Engine: Merging fragments..."); [setattr(l, 'fragments', mdr_merge_fragments_into_lines(l.fragments)) for l in layouts] print(" Engine: Finalizing coords..."); optimizer.finalize_layout_coords(layouts) print(" Engine: Analysis complete.") return MDRExtractionResult(rotation=optimizer.rotation, layouts=layouts, extracted_image=image, adjusted_image=optimizer.adjusted_image) def _run_yolo_detection(self, img: Image, yolo: YOLOv10) -> Generator[MDRLayoutElement, None, None]: img_rgb = img.convert("RGB"); res = yolo.predict(source=img_rgb, imgsz=1024, conf=0.2, device=self._device, verbose=False) if not res or not hasattr(res[0], 'boxes') or res[0].boxes is None: return boxes = res[0].boxes for cls_id_t, xyxy_t in zip(boxes.cls, boxes.xyxy): cls_id = int(cls_id_t.item()); try: cls = MDRLayoutClass(cls_id) except ValueError: continue x1,y1,x2,y2 = [c.item() for c in xyxy_t]; rect = MDRRectangle(lt=(x1,y1), rt=(x2,y1), lb=(x1,y2), rb=(x2,y2)) if rect.is_valid and rect.area > 10: if cls == MDRLayoutClass.TABLE: yield MDRTableLayoutElement(cls=cls, rect=rect, fragments=[], parsed=None) elif cls == MDRLayoutClass.ISOLATE_FORMULA: yield MDRFormulaLayoutElement(cls=cls, rect=rect, fragments=[], latex=None) elif cls in MDRPlainLayoutElement.__annotations__['cls'].__args__: yield MDRPlainLayoutElement(cls=cls, rect=rect, fragments=[]) def _match_fragments_to_layouts(self, frags: list[MDROcrFragment], layouts: list[MDRLayoutElement]) -> list[MDRLayoutElement]: if not frags or not layouts: return layouts layout_polys = [(Polygon(l.rect) if l.rect.is_valid else None) for l in layouts] for frag in frags: try: frag_poly = Polygon(frag.rect); frag_area = frag_poly.area except: continue if not frag_poly.is_valid or frag_area < 1e-6: continue candidates = [] # (layout_idx, layout_area, overlap_ratio) for idx, l_poly in enumerate(layout_polys): if l_poly is None: continue try: inter_area = frag_poly.intersection(l_poly).area except: continue overlap = inter_area / frag_area if frag_area > 0 else 0 if overlap > 0.85: candidates.append((idx, l_poly.area, overlap)) if candidates: candidates.sort(key=lambda x: (x[1], -x[2])); best_idx = candidates[0][0] layouts[best_idx].fragments.append(frag) for l in layouts: l.fragments.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0])) return layouts def _run_ocr_correction(self, img: Image, layouts: list[MDRLayoutElement]): for i, l in enumerate(layouts): if l.cls == MDRLayoutClass.FIGURE: continue try: mdr_correct_layout_fragments(self._ocr_engine, img, l) except Exception as e: print(f" Engine: OCR correction error layout {i}: {e}") def _parse_special_layouts(self, layouts: list[MDRLayoutElement], optimizer: MDRImageOptimizer): img_to_clip = optimizer.image for l in layouts: if isinstance(l, MDRFormulaLayoutElement) and self._ext_formula: try: f_img = mdr_clip_from_image(img_to_clip, l.rect); l.latex = self._latex_extractor.extract(f_img) if f_img.width>1 and f_img.height>1 else None except Exception as e: print(f" Engine: LaTeX extract error: {e}") elif isinstance(l, MDRTableLayoutElement) and self._ext_table is not None: try: t_img = mdr_clip_from_image(img_to_clip, l.rect); parsed = self._table_parser.parse_table_image(t_img, self._ext_table) if t_img.width>1 and t_img.height>1 else None except Exception as e: print(f" Engine: Table parse error: {e}"); parsed = None if parsed: l.parsed = (parsed, self._ext_table) def _should_keep_layout(self, l: MDRLayoutElement) -> bool: if l.fragments and not all(mdr_is_whitespace(f.text) for f in l.fragments): return True return l.cls in [MDRLayoutClass.FIGURE, MDRLayoutClass.TABLE, MDRLayoutClass.ISOLATE_FORMULA] # --- MDR Page Section Linking (section.py) --- class _MDR_LinkedShape: """Internal helper for managing layout linking across pages.""" def __init__(self, layout: MDRLayoutElement): self.layout=layout; self.pre:list[MDRLayoutElement|None]=[None,None]; self.nex:list[MDRLayoutElement|None]=[None,None] @property def distance2(self) -> float: x,y=self.layout.rect.lt; return x*x+y*y class MDRPageSection: """Represents a page's layouts for framework detection via linking.""" def __init__(self, page_index: int, layouts: Iterable[MDRLayoutElement]): self._page_index = page_index; self._shapes = [_MDR_LinkedShape(l) for l in layouts]; self._shapes.sort(key=lambda s: (s.layout.rect.lt[1], s.layout.rect.lt[0])) @property def page_index(self) -> int: return self._page_index def find_framework_elements(self) -> list[MDRLayoutElement]: """Identifies framework layouts based on links to other pages.""" return [s.layout for s in self._shapes if any(s.pre) or any(s.nex)] def link_to_next(self, next_section: 'MDRPageSection', offset: int) -> None: """Links matching shapes between this section and the next.""" if offset not in (1,2): return matches_matrix = [[sn for sn in next_section._shapes if self._shapes_match(ss, sn)] for ss in self._shapes] origin_pair = self._find_origin_pair(matches_matrix, next_section._shapes) if origin_pair is None: return orig_s, orig_n = origin_pair; orig_s_pt, orig_n_pt = orig_s.layout.rect.lt, orig_n.layout.rect.lt for i, s1 in enumerate(self._shapes): potentials = matches_matrix[i]; if not potentials: continue r1_rel = self._relative_rect(orig_s_pt, s1.layout.rect); best_s2, max_ovr = None, -1.0 for s2 in potentials: r2_rel = self._relative_rect(orig_n_pt, s2.layout.rect); ovr = self._symmetric_iou(r1_rel, r2_rel) if ovr > max_ovr: max_ovr, best_s2 = ovr, s2 if max_ovr >= 0.80 and best_s2 is not None: s1.nex[offset-1] = best_s2.layout; best_s2.pre[offset-1] = s1.layout # Link both ways def _shapes_match(self, s1: _MDR_LinkedShape, s2: _MDR_LinkedShape) -> bool: l1, l2 = s1.layout, s2.layout; sz1, sz2 = l1.rect.size, l2.rect.size; thresh = 0.90 if mdr_similarity_ratio(sz1[0], sz2[0]) < thresh or mdr_similarity_ratio(sz1[1], sz2[1]) < thresh: return False f1, f2 = l1.fragments, l2.fragments; c1, c2 = len(f1), len(f2) if c1==0 and c2==0: return True; if c1==0 or c2==0: return False; matches, used_f2 = 0, [False]*c2 for frag1 in f1: best_j, max_sim = -1, -1.0 for j, frag2 in enumerate(f2): if not used_f2[j]: sim = self._fragment_sim(l1, l2, frag1, frag2); if sim > max_sim: max_sim, best_j = sim, j if max_sim > 0.75: matches += 1; if best_j != -1: used_f2[best_j] = True max_c = max(c1, c2); rate_frags = matches / max_c return self._check_match_threshold(rate_frags, max_c, (0.0, 0.45, 0.45, 0.6, 0.8, 0.95)) def _fragment_sim(self, l1: MDRLayoutElement, l2: MDRLayoutElement, f1: MDROcrFragment, f2: MDROcrFragment) -> float: r1_rel = self._relative_rect(l1.rect.lt, f1.rect); r2_rel = self._relative_rect(l2.rect.lt, f2.rect) geom_sim = self._symmetric_iou(r1_rel, r2_rel); text_sim, _ = mdr_check_text_similarity(f1.text, f2.text) return (geom_sim + text_sim) / 2.0 def _find_origin_pair(self, matches_matrix: list[list[_MDR_LinkedShape]], next_shapes: list[_MDR_LinkedShape]) -> tuple[_MDR_LinkedShape, _MDR_LinkedShape] | None: best_pair, min_dist2 = None, float('inf') for i, s1 in enumerate(self._shapes): match_list = matches_matrix[i]; if not match_list: continue for s2 in match_list: dist2 = s1.distance2 + s2.distance2; if dist2 < min_dist2: min_dist2, best_pair = dist2, (s1, s2) return best_pair def _check_match_threshold(self, rate: float, count: int, thresholds: Sequence[float]) -> bool: if not thresholds: return False; idx = min(count, len(thresholds)-1); return rate >= thresholds[idx] def _relative_rect(self, origin: MDRPoint, rect: MDRRectangle) -> MDRRectangle: ox, oy = origin; r=rect; return MDRRectangle(lt=(r.lt[0]-ox, r.lt[1]-oy), rt=(r.rt[0]-ox, r.rt[1]-oy), lb=(r.lb[0]-ox, r.lb[1]-oy), rb=(r.rb[0]-ox, r.rb[1]-oy)) def _symmetric_iou(self, r1: MDRRectangle, r2: MDRRectangle) -> float: try: p1, p2 = Polygon(r1), Polygon(r2); except: return 0.0 if not p1.is_valid or not p2.is_valid: return 0.0 try: inter = p1.intersection(p2); union = p1.union(p2) except: return 0.0 if inter.is_empty or inter.area < 1e-6: return 0.0 union_area = union.area; return inter.area / union_area if union_area > 1e-6 else 1.0 # --- MDR Document Iterator (document.py) --- _MDR_CONTEXT_PAGES = 2 # Look behind/ahead pages for context @dataclass class MDRProcessingParams: """Parameters for processing a document.""" pdf: str | FitzDocument; page_indexes: Iterable[int] | None; report_progress: MDRProgressReportCallback | None class MDRDocumentIterator: """Iterates through document pages, handles context, and calls the extraction engine.""" def __init__(self, device: Literal["cpu", "cuda"], model_dir_path: str, ocr_level: MDROcrLevel, extract_formula: bool, extract_table_format: MDRTableLayoutParsedFormat | None, debug_dir_path: str | None): self._debug_dir = debug_dir_path self._engine = MDRExtractionEngine(device=device, model_dir_path=model_dir_path, ocr_for_each_layouts=(ocr_level==MDROcrLevel.OncePerLayout), extract_formula=extract_formula, extract_table_format=extract_table_format) def iterate_sections(self, params: MDRProcessingParams) -> Generator[tuple[int, MDRExtractionResult, list[MDRLayoutElement]], None, None]: """Yields page index, extraction result, and content layouts for each requested page.""" for res, sec in self._process_and_link_sections(params): framework = set(sec.find_framework_elements()); content = [l for l in res.layouts if l not in framework]; yield sec.page_index, res, content def _process_and_link_sections(self, params: MDRProcessingParams) -> Generator[tuple[MDRExtractionResult, MDRPageSection], None, None]: queue: list[tuple[MDRExtractionResult, MDRPageSection]] = [] for page_idx, res in self._run_extraction_on_pages(params): cur_sec = MDRPageSection(page_idx, res.layouts) for i, (_, prev_sec) in enumerate(queue): offset = len(queue)-i; if offset <= _MDR_CONTEXT_PAGES: prev_sec.link_to_next(cur_sec, offset) queue.append((res, cur_sec)) if len(queue) > _MDR_CONTEXT_PAGES: yield queue.pop(0) for res, sec in queue: yield res, sec def _run_extraction_on_pages(self, params: MDRProcessingParams) -> Generator[tuple[int, MDRExtractionResult], None, None]: if self._debug_dir: mdr_ensure_directory(self._debug_dir) doc, should_close = None, False if isinstance(params.pdf, str): try: doc = fitz.open(params.pdf); should_close = True except Exception as e: print(f"ERROR: PDF open failed: {e}"); return elif isinstance(params.pdf, FitzDocument): doc = params.pdf else: print(f"ERROR: Invalid PDF type: {type(params.pdf)}"); return scan_idxs, enable_idxs = self._get_page_ranges(doc, params.page_indexes) enable_set = set(enable_idxs); total_scan = len(scan_idxs) try: for i, page_idx in enumerate(scan_idxs): print(f" Iterator: Processing page {page_idx+1}/{doc.page_count} (Scan {i+1}/{total_scan})...") try: page = doc.load_page(page_idx); img = self._render_page_image(page, 300) res = self._engine.analyze_image(image=img, adjust_points=False) # Engine analyzes image if self._debug_dir: self._save_debug_plot(img, page_idx, res, self._debug_dir) if page_idx in enable_set: yield page_idx, res # Yield result for requested pages if params.report_progress: params.report_progress(i+1, total_scan) except Exception as e: print(f" Iterator: Page {page_idx+1} processing error: {e}") finally: if should_close and doc: doc.close() def _get_page_ranges(self, doc: FitzDocument, idxs: Iterable[int]|None) -> tuple[Sequence[int], Sequence[int]]: count = doc.page_count; if idxs is None: all_p = list(range(count)); return all_p, all_p enable, scan = set(), set() for i in idxs: if 0<=i Image: mat = FitzMatrix(dpi/72.0, dpi/72.0); pix = page.get_pixmap(matrix=mat, alpha=False) return frombytes("RGB", (pix.width, pix.height), pix.samples) def _save_debug_plot(self, img: Image, idx: int, res: MDRExtractionResult, path: str): try: plot_img = res.adjusted_image.copy() if res.adjusted_image else img.copy(); mdr_plot_layout(plot_img, res.layouts); plot_img.save(os.path.join(path, f"mdr_plot_page_{idx+1}.png")) except Exception as e: print(f" Iterator: Plot generation error page {idx+1}: {e}") # --- MagicDataReadiness Main Processor (PDFPageExtractor.py) --- class MagicPDFProcessor: """ Main class for processing PDF documents to extract structured data blocks using the MagicDataReadiness pipeline. """ def __init__(self, device: Literal["cpu", "cuda"]="cuda", model_dir_path: str="./mdr_models", ocr_level: MDROcrLevel=MDROcrLevel.Once, extract_formula: bool=True, extract_table_format: MDRExtractedTableFormat|None=None, debug_dir_path: str|None=None): """ Initializes the MagicPDFProcessor. Args: device: Computation device ('cpu' or 'cuda'). Defaults to 'cuda'. Fallbacks to 'cpu' if CUDA not available. model_dir_path: Path to directory for storing/caching downloaded models. Defaults to './mdr_models'. ocr_level: Level of OCR application (Once per page or Once per layout). Defaults to Once per page. extract_formula: Whether to attempt LaTeX extraction from formula images. Defaults to True. extract_table_format: Desired format for extracted table content (LATEX, MARKDOWN, HTML, DISABLE, or None). Defaults to LATEX if CUDA is available, otherwise DISABLE. debug_dir_path: Optional path to save debug plots and intermediate files. Defaults to None (disabled). """ actual_dev = device if torch.cuda.is_available() else "cpu"; print(f"MagicPDFProcessor using device: {actual_dev}.") if extract_table_format is None: extract_table_format = MDRExtractedTableFormat.LATEX if actual_dev=="cuda" else MDRExtractedTableFormat.DISABLE table_fmt_internal: MDRTableLayoutParsedFormat|None = None if extract_table_format==MDRExtractedTableFormat.LATEX: table_fmt_internal=MDRTableLayoutParsedFormat.LATEX elif extract_table_format==MDRExtractedTableFormat.MARKDOWN: table_fmt_internal=MDRTableLayoutParsedFormat.MARKDOWN elif extract_table_format==MDRExtractedTableFormat.HTML: table_fmt_internal=MDRTableLayoutParsedFormat.HTML self._iterator = MDRDocumentIterator(device=actual_dev, model_dir_path=model_dir_path, ocr_level=ocr_level, extract_formula=extract_formula, extract_table_format=table_fmt_internal, debug_dir_path=debug_dir_path) print("MagicPDFProcessor initialized.") def process_document(self, pdf_input: str|FitzDocument, report_progress: MDRProgressReportCallback|None=None) -> Generator[MDRStructuredBlock, None, None]: """ Processes the entire PDF document and yields all extracted structured blocks. Args: pdf_input: Path to the PDF file or a loaded fitz.Document object. report_progress: Optional callback function for progress updates (receives completed_scan_pages, total_scan_pages). Yields: MDRStructuredBlock: An extracted block (MDRTextBlock, MDRTableBlock, etc.). """ print(f"Processing document: {pdf_input if isinstance(pdf_input, str) else 'FitzDocument object'}") for _, blocks, _ in self.process_document_pages(pdf_input=pdf_input, report_progress=report_progress, page_indexes=None): yield from blocks print("Document processing complete.") def process_document_pages(self, pdf_input: str|FitzDocument, page_indexes: Iterable[int]|None=None, report_progress: MDRProgressReportCallback|None=None) -> Generator[tuple[int, list[MDRStructuredBlock], Image], None, None]: """ Processes specific pages (or all if page_indexes is None) of the PDF document. Yields results page by page, including the page index, extracted blocks, and the original page image. Args: pdf_input: Path to the PDF file or a loaded fitz.Document object. page_indexes: An iterable of 0-based page indices to process. If None, processes all pages. report_progress: Optional callback function for progress updates. Yields: tuple[int, list[MDRStructuredBlock], Image]: - page_index (0-based) - list of extracted MDRStructuredBlock objects for that page - PIL Image object of the original rendered page """ params = MDRProcessingParams(pdf=pdf_input, page_indexes=page_indexes, report_progress=report_progress) page_count = 0 for page_idx, extraction_result, content_layouts in self._iterator.iterate_sections(params): page_count += 1 print(f"Processor: Converting layouts to blocks for page {page_idx+1}...") blocks = self._create_structured_blocks(extraction_result, content_layouts) print(f"Processor: Analyzing paragraph structure for page {page_idx+1}...") self._analyze_paragraph_structure(blocks) print(f"Processor: Yielding results for page {page_idx+1}.") yield page_idx, blocks, extraction_result.extracted_image # Yield original image print(f"Processor: Finished processing {page_count} pages.") def _create_structured_blocks(self, result: MDRExtractionResult, layouts: list[MDRLayoutElement]) -> list[MDRStructuredBlock]: """Converts MDRLayoutElement objects into MDRStructuredBlock objects.""" temp_store: list[tuple[MDRLayoutElement, MDRStructuredBlock]] = [] for layout in layouts: if isinstance(layout, MDRPlainLayoutElement): self._add_plain_block(temp_store, layout, result) elif isinstance(layout, MDRTableLayoutElement): temp_store.append((layout, self._create_table_block(layout, result))) elif isinstance(layout, MDRFormulaLayoutElement): temp_store.append((layout, self._create_formula_block(layout, result))) self._assign_relative_font_sizes(temp_store); return [block for _, block in temp_store] def _analyze_paragraph_structure(self, blocks: list[MDRStructuredBlock]): """Calculates indentation and line-end heuristics for MDRTextBlocks.""" page_h, page_x1, page_x2 = self._calculate_text_range((b for b in blocks if isinstance(b, MDRTextBlock) and b.kind!=MDRTextKind.ABANDON)) if page_h <= 1e-6: return # Avoid calculations if no valid text height for b in blocks: if not isinstance(b, MDRTextBlock) or b.kind==MDRTextKind.ABANDON or not b.texts: continue h, x1, x2 = page_h, page_x1, page_x2; first_t, last_t = b.texts[0], b.texts[-1] try: # Add try-except for robustness first_x = (first_t.rect.lt[0]+first_t.rect.lb[0])/2; first_delta = first_x - x1 b.has_paragraph_indentation = first_delta > h * 1.0 # Heuristic threshold last_x = (last_t.rect.rt[0]+last_t.rect.rb[0])/2; last_delta = x2 - last_x b.last_line_touch_end = last_delta < h * 1.0 # Heuristic threshold except Exception as e: print(f"Warn: Error calculating paragraph structure for block: {e}") b.has_paragraph_indentation = False; b.last_line_touch_end = False def _calculate_text_range(self, blocks_iter: Iterable[MDRStructuredBlock]) -> tuple[float, float, float]: """Calculates average line height and min/max x-coordinates for text.""" h_sum, count, x1, x2 = 0.0, 0, float('inf'), float('-inf') for b in blocks_iter: if not isinstance(b, MDRTextBlock) or b.kind==MDRTextKind.ABANDON: continue for t in b.texts: _, h = t.rect.size; if h>1e-6: h_sum += h; count += 1 # Use small threshold for valid height tx1, _, tx2, _ = t.rect.wrapper; x1, x2 = min(x1, tx1), max(x2, tx2) if count==0: return 0.0, 0.0, 0.0 mean_h = h_sum/count; x1 = 0.0 if x1==float('inf') else x1; x2 = 0.0 if x2==float('-inf') else x2; return mean_h, x1, x2 def _add_plain_block(self, store: list[tuple[MDRLayoutElement, MDRStructuredBlock]], layout: MDRPlainLayoutElement, result: MDRExtractionResult): """Creates MDRStructuredBlocks for plain layout types.""" cls = layout.cls; texts = self._convert_fragments_to_spans(layout.fragments) if cls==MDRLayoutClass.TITLE: store.append((layout, MDRTextBlock(layout.rect, texts, 0.0, MDRTextKind.TITLE))) elif cls==MDRLayoutClass.PLAIN_TEXT: store.append((layout, MDRTextBlock(layout.rect, texts, 0.0, MDRTextKind.PLAIN_TEXT))) elif cls==MDRLayoutClass.ABANDON: store.append((layout, MDRTextBlock(layout.rect, texts, 0.0, MDRTextKind.ABANDON))) elif cls==MDRLayoutClass.FIGURE: store.append((layout, MDRFigureBlock(layout.rect, [], 0.0, mdr_clip_layout(result, layout)))) elif cls==MDRLayoutClass.FIGURE_CAPTION: block=self._find_previous_block(store, MDRFigureBlock); block.texts.extend(texts) if block else None elif cls==MDRLayoutClass.TABLE_CAPTION or cls==MDRLayoutClass.TABLE_FOOTNOTE: block=self._find_previous_block(store, MDRTableBlock); block.texts.extend(texts) if block else None elif cls==MDRLayoutClass.FORMULA_CAPTION: block=self._find_previous_block(store, MDRFormulaBlock); block.texts.extend(texts) if block else None def _find_previous_block(self, store: list[tuple[MDRLayoutElement, MDRStructuredBlock]], block_type: type) -> MDRStructuredBlock | None: """Finds the most recent block of a specific type.""" for i in range(len(store)-1, -1, -1): _, block = store[i]; if isinstance(block, block_type): return block return None def _create_table_block(self, layout: MDRTableLayoutElement, result: MDRExtractionResult) -> MDRTableBlock: """Converts MDRTableLayoutElement to MDRTableBlock.""" fmt, content = MDRTableFormat.UNRECOGNIZABLE, "" if layout.parsed: p_content, p_fmt = layout.parsed; can_use = not (p_fmt==MDRTableLayoutParsedFormat.LATEX and mdr_contains_cjka("".join(f.text for f in layout.fragments))) if can_use: content = p_content if p_fmt==MDRTableLayoutParsedFormat.LATEX: fmt=MDRTableFormat.LATEX elif p_fmt==MDRTableLayoutParsedFormat.MARKDOWN: fmt=MDRTableFormat.MARKDOWN elif p_fmt==MDRTableLayoutParsedFormat.HTML: fmt=MDRTableFormat.HTML return MDRTableBlock(layout.rect, [], 0.0, fmt, content, mdr_clip_layout(result, layout)) def _create_formula_block(self, layout: MDRFormulaLayoutElement, result: MDRExtractionResult) -> MDRFormulaBlock: """Converts MDRFormulaLayoutElement to MDRFormulaBlock.""" content = layout.latex if layout.latex and not mdr_contains_cjka("".join(f.text for f in layout.fragments)) else None return MDRFormulaBlock(layout.rect, [], 0.0, content, mdr_clip_layout(result, layout)) def _assign_relative_font_sizes(self, store: list[tuple[MDRLayoutElement, MDRStructuredBlock]]): """Calculates and assigns relative font size (0-1) to blocks.""" sizes = [] for l, _ in store: heights = [f.rect.size[1] for f in l.fragments if f.rect.size[1]>1e-6] # Use small threshold avg_h = sum(heights)/len(heights) if heights else 0.0 sizes.append(avg_h) valid = [s for s in sizes if s>1e-6]; min_s, max_s = (min(valid), max(valid)) if valid else (0.0, 0.0) rng = max_s - min_s if rng < 1e-6: [setattr(b, 'font_size', 0.0) for _, b in store] else: [setattr(b, 'font_size', (s-min_s)/rng if s>1e-6 else 0.0) for s, (_, b) in zip(sizes, store)] def _convert_fragments_to_spans(self, frags: list[MDROcrFragment]) -> list[MDRTextSpan]: """Converts MDROcrFragment list to MDRTextSpan list.""" return [MDRTextSpan(f.text, f.rank, f.rect) for f in frags] # --- MagicDataReadiness Example Usage --- if __name__ == '__main__': print("="*60) print(" MagicDataReadiness PDF Processor - Example Usage") print("="*60) # --- 1. Configuration (!!! MODIFY THESE PATHS !!!) --- # Directory where models are stored or will be downloaded # IMPORTANT: Create this directory or ensure it's writable! MDR_MODEL_DIRECTORY = "./mdr_pipeline_models" # Path to the PDF file you want to process # IMPORTANT: Place a PDF file here for testing! MDR_INPUT_PDF = "example_input.pdf" # <--- CHANGE THIS # Optional: Directory to save debug plots (set to None to disable) MDR_DEBUG_DIRECTORY = "./mdr_debug_output" # Specify device ('cuda' or 'cpu'). MDR_DEVICE = "cuda" # Specify desired table format MDR_TABLE_FORMAT = MDRExtractedTableFormat.MARKDOWN # Specify pages (list of 0-based indices, or None for all) MDR_PAGES = None # Example: [0, 1] for first two pages # --- 2. Setup & Pre-checks --- print(f"Model Directory: {os.path.abspath(MDR_MODEL_DIRECTORY)}") print(f"Input PDF: {os.path.abspath(MDR_INPUT_PDF)}") print(f"Debug Output: {os.path.abspath(MDR_DEBUG_DIRECTORY) if MDR_DEBUG_DIRECTORY else 'Disabled'}") print(f"Target Device: {MDR_DEVICE}") print(f"Table Format: {MDR_TABLE_FORMAT.name}") print(f"Pages: {'All' if MDR_PAGES is None else MDR_PAGES}") print("-" * 60) mdr_ensure_directory(MDR_MODEL_DIRECTORY) if MDR_DEBUG_DIRECTORY: mdr_ensure_directory(MDR_DEBUG_DIRECTORY) if not Path(MDR_INPUT_PDF).is_file(): print(f"ERROR: Input PDF not found at '{MDR_INPUT_PDF}'. Please place a PDF file there or update the path.") exit(1) # --- 3. Progress Callback --- def mdr_progress_update(completed, total): perc = (completed / total) * 100 if total > 0 else 0 print(f" [Progress] Scanned {completed}/{total} pages ({perc:.1f}%)") # --- 4. Initialize Processor --- print("Initializing MagicPDFProcessor...") init_start = time.time() try: mdr_processor = MagicPDFProcessor( device=MDR_DEVICE, model_dir_path=MDR_MODEL_DIRECTORY, debug_dir_path=MDR_DEBUG_DIRECTORY, extract_table_format=MDR_TABLE_FORMAT ) print(f"Initialization took {time.time() - init_start:.2f}s") except Exception as e: print(f"FATAL ERROR during initialization: {e}") import traceback traceback.print_exc() exit(1) # --- 5. Process Document --- print("\nStarting document processing...") proc_start = time.time() all_blocks_count = 0 processed_pages_count = 0 try: # Use the main processing method block_generator = mdr_processor.process_document_pages( pdf_input=MDR_INPUT_PDF, page_indexes=MDR_PAGES, report_progress=mdr_progress_update ) # Iterate through pages and blocks for page_idx, page_blocks, page_img in block_generator: processed_pages_count += 1 print(f"\n--- Page {page_idx + 1} Results ---") if not page_blocks: print(" No blocks extracted.") continue print(f" Extracted {len(page_blocks)} blocks:") for block_idx, block in enumerate(page_blocks): all_blocks_count += 1 info = f" - Block {block_idx+1}: {type(block).__name__}" if isinstance(block, MDRTextBlock): preview = block.texts[0].content[:70].replace('\n',' ') + "..." if block.texts else "[EMPTY]" info += f" (Kind: {block.kind.name}, FontSz: {block.font_size:.2f}) | Text: '{preview}'" elif isinstance(block, MDRTableBlock): info += f" (Format: {block.format.name}, HasContent: {bool(block.content)}, FontSz: {block.font_size:.2f})" # if block.content: print(f" Content:\n{block.content}") # Uncomment to see content elif isinstance(block, MDRFormulaBlock): info += f" (HasLatex: {bool(block.content)}, FontSz: {block.font_size:.2f})" # if block.content: print(f" LaTeX: {block.content}") # Uncomment to see content elif isinstance(block, MDRFigureBlock): info += f" (FontSz: {block.font_size:.2f})" print(info) proc_time = time.time() - proc_start print("\n" + "="*60) print(" Processing Summary") print(f" Total time: {proc_time:.2f} seconds") print(f" Pages processed: {processed_pages_count}") print(f" Total blocks extracted: {all_blocks_count}") print("="*60) except Exception as e: print(f"\nFATAL ERROR during processing: {e}") import traceback traceback.print_exc() exit(1)