teammrag-parser-moreai / mdr_pdf_parser.py
rodrigomasini's picture
Update mdr_pdf_parser.py
a65e05e verified
raw
history blame
114 kB
# -*- coding: utf-8 -*-
# /=====================================================================\ #
# | MagicDataReadiness - MAGIC PDF Parser | #
# |---------------------------------------------------------------------| #
# | Description: | #
# | Extracts structured content (text, tables, figures, formulas) | #
# | from PDF documents using layout analysis and OCR. | #
# | Combines logic from various internal components. | #
# |---------------------------------------------------------------------| #
# | Dependencies: | #
# | - Python 3.11+ | #
# | - External Libraries (See imports below and installation notes) | #
# | - Pre-trained CV Models (Downloaded automatically to model dir) | #
# |---------------------------------------------------------------------| #
# | Usage: | #
# | See the __main__ block at the end of the script for an example. | #
# \=====================================================================/ #
# --- External Library Imports ---
import os
import re
import io
import copy
import fitz # PyMuPDF
from fitz import Document as FitzDocument, Page as FitzPage, Matrix as FitzMatrix
import numpy as np
import cv2 # OpenCV
import torch # PyTorch
import requests # For downloading models
from pathlib import Path
from enum import auto, Enum
from dataclasses import dataclass, field
from typing import Iterable, Generator, Sequence, Callable, TypeAlias, List, Dict, Any, Optional
from typing import Literal
from collections import defaultdict
from math import pi, ceil, sin, cos, sqrt, atan2
from PIL.Image import Image, frombytes, new as new_image, Resampling as PILResampling, Transform as PILTransform
from PIL.ImageOps import expand as pil_expand
from PIL import ImageDraw
from PIL.ImageFont import load_default, FreeTypeFont
from shapely.geometry import Polygon
import pyclipper
from unicodedata import category
from alphabet_detector import AlphabetDetector
from munch import Munch
from transformers import LayoutLMv3ForTokenClassification
import onnxruntime
from enum import auto, Enum
# --- HUGGING FACE HUB IMPORT ONLY BECAUSE RUNNING IN SPACES NOT NECESSARY IN PROD ---
from huggingface_hub import hf_hub_download
from huggingface_hub.errors import HfHubHTTPError
import time # Added for example usage timing
# --- External Dependencies ---
try:
from doclayout_yolo import YOLOv10
except ImportError:
print("Warning: Could not import YOLOv10 from doclayout_yolo. Layout detection will fail.")
YOLOv10 = None
try:
from pix2tex.cli import LatexOCR
except ImportError:
print("Warning: Could not import LatexOCR from pix2tex.cli. LaTeX extraction will fail.")
LatexOCR = None
try:
pass # from struct_eqtable import build_model # Keep commented as per original
except ImportError:
print("Warning: Could not import build_model from struct_eqtable. Table parsing might fail.")
# --- MagicDataReadiness Core Components ---
# --- MDR Utilities ---
def mdr_download_model(url: str, file_path: Path):
"""Downloads a model file from a URL to a local path."""
try:
response = requests.get(url, stream=True, timeout=120) # Increased timeout
response.raise_for_status()
file_path.parent.mkdir(parents=True, exist_ok=True)
with open(file_path, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"Successfully downloaded {file_path.name}")
except requests.exceptions.RequestException as e:
print(f"ERROR: Failed to download {url}: {e}")
if file_path.exists(): os.remove(file_path)
raise FileNotFoundError(f"Failed to download model from {url}") from e
except Exception as e:
print(f"ERROR: Failed writing file {file_path}: {e}")
if file_path.exists(): os.remove(file_path)
raise e
def mdr_ensure_directory(path: str) -> str:
"""Ensures a directory exists, creating it if necessary."""
path = os.path.abspath(path)
os.makedirs(path, exist_ok=True)
return path
def mdr_is_whitespace(text: str) -> bool:
"""Checks if a string contains only whitespace."""
return bool(re.match(r"^\s*$", text)) if text else True
def mdr_expand_image(image: Image, percent: float) -> Image:
"""Expands an image with a white border."""
if percent <= 0: return image.copy()
w, h = image.size
bw, bh = ceil(w * percent), ceil(h * percent)
fill: tuple[int, ...] | int
if image.mode == "RGBA": fill = (255, 255, 255, 255)
elif image.mode in ("LA", "L"): fill = 255
else: fill = (255, 255, 255)
return pil_expand(image=image, border=(bw, bh), fill=fill)
# --- MDR Geometry ---
MDRPoint: TypeAlias = tuple[float, float]
@dataclass
class MDRRectangle:
"""Represents a geometric rectangle defined by four corner points."""
lt: MDRPoint; rt: MDRPoint; lb: MDRPoint; rb: MDRPoint
def __iter__(self) -> Generator[MDRPoint, None, None]: yield self.lt; yield self.lb; yield self.rb; yield self.rt
@property
def is_valid(self) -> bool:
try: return Polygon(self).is_valid
except: return False
@property
def segments(self) -> Generator[tuple[MDRPoint, MDRPoint], None, None]: yield (self.lt, self.lb); yield (self.lb, self.rb); yield (self.rb, self.rt); yield (self.rt, self.lt)
@property
def area(self) -> float:
try: return Polygon(self).area
except: return 0.0
@property
def size(self) -> tuple[float, float]:
widths, heights = [], []
for i, (p1, p2) in enumerate(self.segments):
dx, dy = p1[0]-p2[0], p1[1]-p2[1]
dist = sqrt(dx*dx + dy*dy)
if i % 2 == 0: heights.append(dist)
else: widths.append(dist)
avg_w = sum(widths)/len(widths) if widths else 0.0
avg_h = sum(heights)/len(heights) if heights else 0.0
return avg_w, avg_h
@property
def wrapper(self) -> tuple[float, float, float, float]:
x1, y1, x2, y2 = float("inf"), float("inf"), float("-inf"), float("-inf")
for x, y in self:
x1, y1, x2, y2 = min(x1, x), min(y1, y), max(x2, x), max(y2, y)
return x1, y1, x2, y2
def mdr_intersection_area(rect1: MDRRectangle, rect2: MDRRectangle) -> float:
"""Calculates intersection area between two MDRRectangles."""
try:
p1 = Polygon(rect1)
p2 = Polygon(rect2)
if not p1.is_valid or not p2.is_valid:
return 0.0
return p1.intersection(p2).area
except:
return 0.0
# --- MDR Data Structures ---
@dataclass
class MDROcrFragment:
"""Represents a fragment of text identified by OCR."""
order: int; text: str; rank: float; rect: MDRRectangle
class MDRLayoutClass(Enum):
"""Enumeration of different layout types identified."""
TITLE=0; PLAIN_TEXT=1; ABANDON=2; FIGURE=3; FIGURE_CAPTION=4; TABLE=5; TABLE_CAPTION=6; TABLE_FOOTNOTE=7; ISOLATE_FORMULA=8; FORMULA_CAPTION=9
class MDRTableLayoutParsedFormat(Enum):
"""Enumeration for formats of parsed table content."""
LATEX=auto(); MARKDOWN=auto(); HTML=auto()
@dataclass
class MDRBaseLayoutElement:
"""Base class for layout elements found on a page."""
rect: MDRRectangle; fragments: list[MDROcrFragment]
@dataclass
class MDRPlainLayoutElement(MDRBaseLayoutElement):
"""Layout element for plain text, titles, captions, figures, etc."""
# MODIFIED: Replaced Literal[...] with the Enum class name
cls: MDRLayoutClass # The type hint is now the Enum class itself
@dataclass
class MDRTableLayoutElement(MDRBaseLayoutElement):
"""Layout element specifically for tables."""
parsed: tuple[str, MDRTableLayoutParsedFormat] | None
# MODIFIED: Replaced Literal[EnumMember] with the Enum class name
cls: MDRLayoutClass = MDRLayoutClass.TABLE # Hint with Enum, assign default member
@dataclass
class MDRFormulaLayoutElement(MDRBaseLayoutElement):
"""Layout element specifically for formulas."""
latex: str | None
# MODIFIED: Replaced Literal[EnumMember] with the Enum class name
cls: MDRLayoutClass = MDRLayoutClass.ISOLATE_FORMULA # Hint with Enum, assign default member
MDRLayoutElement = MDRPlainLayoutElement | MDRTableLayoutElement | MDRFormulaLayoutElement # Type alias
@dataclass
class MDRExtractionResult:
"""Holds the complete result of extracting from a single page image."""
rotation: float; layouts: list[MDRLayoutElement]; extracted_image: Image; adjusted_image: Image | None
# --- MDR Data Structures ---
MDRProgressReportCallback: TypeAlias = Callable[[int, int], None]
class MDROcrLevel(Enum): Once=auto(); OncePerLayout=auto()
class MDRExtractedTableFormat(Enum): LATEX=auto(); MARKDOWN=auto(); HTML=auto(); DISABLE=auto()
class MDRTextKind(Enum): TITLE=0; PLAIN_TEXT=1; ABANDON=2
@dataclass
class MDRTextSpan:
"""Represents a span of text content within a block."""
content: str; rank: float; rect: MDRRectangle
@dataclass
class MDRBasicBlock:
"""Base class for structured blocks extracted from the document."""
rect: MDRRectangle
texts: list[MDRTextSpan]
font_size: float # Relative font size (0-1)
@dataclass
class MDRTextBlock(MDRBasicBlock):
"""A structured block containing text content."""
kind: MDRTextKind
has_paragraph_indentation: bool = False
last_line_touch_end: bool = False
class MDRTableFormat(Enum):
LATEX=auto()
MARKDOWN=auto()
HTML=auto()
UNRECOGNIZABLE=auto()
@dataclass
class MDRTableBlock(MDRBasicBlock):
"""A structured block representing a table."""
content: str
format: MDRTableFormat
image: Image # Image clip of the table
@dataclass
class MDRFormulaBlock(MDRBasicBlock):
"""A structured block representing a formula."""
content: str | None
image: Image # Image clip of the formula
@dataclass
class MDRFigureBlock(MDRBasicBlock):
"""A structured block representing a figure/image."""
image: Image # Image clip of the figure
MDRAssetBlock = MDRTableBlock | MDRFormulaBlock | MDRFigureBlock # Type alias
MDRStructuredBlock = MDRTextBlock | MDRAssetBlock # Type alias
# --- MDR Utilities ---
def mdr_similarity_ratio(v1: float, v2: float) -> float:
"""Calculates the ratio of the smaller value to the larger value (0-1)."""
if v1 == 0 and v2 == 0:
return 1.0
if v1 < 0 or v2 < 0:
return 0.0
v1, v2 = (v2, v1) if v1 > v2 else (v1, v2)
return 1.0 if v2 == 0 else v1 / v2
def mdr_intersection_bounds_size(r1: MDRRectangle, r2: MDRRectangle) -> tuple[float, float]:
"""Calculates width/height of the intersection bounding box."""
try:
p1 = Polygon(r1)
p2 = Polygon(r2)
if not p1.is_valid or not p2.is_valid:
return 0.0, 0.0
inter = p1.intersection(p2)
if inter.is_empty:
return 0.0, 0.0
minx, miny, maxx, maxy = inter.bounds
return maxx - minx, maxy - miny
except:
return 0.0, 0.0
_MDR_CJKA_PATTERN = re.compile(r"[\u4e00-\u9fff\u3040-\u309f\u30a0-\u30ff\uac00-\ud7a3\u0600-\u06ff]")
def mdr_contains_cjka(text: str):
"""Checks if text contains Chinese, Japanese, Korean, or Arabic chars."""
return bool(_MDR_CJKA_PATTERN.search(text)) if text else False
# --- MDR Text Processing ---
class _MDR_TokenPhase(Enum):
Init=0
Letter=1
Character=2
Number=3
Space=4
_mdr_alphabet_detector = AlphabetDetector()
def _mdr_is_letter(char: str):
if not category(char).startswith("L"):
return False
try:
return _mdr_alphabet_detector.is_latin(char) or _mdr_alphabet_detector.is_cyrillic(char) or _mdr_alphabet_detector.is_greek(char) or _mdr_alphabet_detector.is_hebrew(char)
except: return False
def mdr_split_into_words(text: str):
"""Splits text into words, numbers, and individual non-alphanumeric chars."""
if not text: return
sp = re.compile(r"\s")
np = re.compile(r"\d")
nsp = re.compile(r"[\.,']")
buf = io.StringIO()
phase = _MDR_TokenPhase.Init
for char in text:
is_l = _mdr_is_letter(char)
is_d = np.match(char)
is_s = sp.match(char)
is_ns = nsp.match(char)
if is_l:
if phase in (_MDR_TokenPhase.Number, _MDR_TokenPhase.Character):
w = buf.getvalue()
yield w if w else None
buf = io.StringIO()
buf.write(char)
phase = _MDR_TokenPhase.Letter
elif is_d:
if phase in (_MDR_TokenPhase.Letter, _MDR_TokenPhase.Character):
w = buf.getvalue()
yield w if w else None
buf = io.StringIO()
buf.write(char)
phase = _MDR_TokenPhase.Number
elif phase == _MDR_TokenPhase.Number and is_ns:
buf.write(char)
else:
if phase in (_MDR_TokenPhase.Letter, _MDR_TokenPhase.Number):
w = buf.getvalue()
yield w if w else None
buf = io.StringIO()
if is_s:
phase = _MDR_TokenPhase.Space
else:
yield char
phase = _MDR_TokenPhase.Character
if phase in (_MDR_TokenPhase.Letter, _MDR_TokenPhase.Number):
w = buf.getvalue()
yield w if w else None
def mdr_check_text_similarity(t1: str, t2: str) -> tuple[float, int]:
"""Calculates word-based similarity between two texts."""
w1 = list(mdr_split_into_words(t1))
w2 = list(mdr_split_into_words(t2))
l1 = len(w1)
l2 = len(w2)
if l1 == 0 and l2 == 0:
return 1.0, 0
if l1 == 0 or l2 == 0:
return 0.0, max(l1, l2)
if l1 > l2:
w1, w2, l1, l2 = w2, w1, l2, l1
taken = [False] * l2
matches = 0
for word1 in w1:
for i, word2 in enumerate(w2):
if not taken[i] and word1 == word2:
taken[i] = True
matches += 1
break
mismatches = l2 - matches
return 1.0 - (mismatches / l2), l2
# --- MDR Geometry Processing ---
class MDRRotationAdjuster:
"""Adjusts point coordinates based on image rotation."""
def __init__(self, origin_size: tuple[int, int], new_size: tuple[int, int], rotation: float, to_origin_coordinate: bool):
fs, ts = (new_size, origin_size) if to_origin_coordinate else (origin_size, new_size)
self._rot = rotation if to_origin_coordinate else -rotation
self._c_off = (fs[0]/2.0, fs[1]/2.0)
self._n_off = (ts[0]/2.0, ts[1]/2.0)
def adjust(self, point: MDRPoint) -> MDRPoint:
x = point[0] - self._c_off[0]
y = point[1] - self._c_off[1]
if x != 0 or y != 0:
cos_r = cos(self._rot)
sin_r = sin(self._rot)
x, y = x * cos_r - y * sin_r, x * sin_r + y * cos_r
return x + self._n_off[0], y + self._n_off[1]
def mdr_normalize_vertical_rotation(rot: float) -> float:
while rot >= pi:
rot -= pi
while rot < 0:
rot += pi
return rot
def _mdr_get_rectangle_angles(rect: MDRRectangle) -> tuple[list[float], list[float]] | None:
h_angs, v_angs = [], []
for i, (p1, p2) in enumerate(rect.segments):
dx = p2[0] - p1[0]
dy = p2[1] - p1[1]
if abs(dx) < 1e-6 and abs(dy) < 1e-6:
continue
ang = atan2(dy, dx)
if ang < 0:
ang += pi
if ang < pi * 0.25 or ang >= pi * 0.75:
h_angs.append(ang - pi if ang >= pi * 0.75 else ang)
else:
v_angs.append(ang)
if not h_angs or not v_angs:
return None
return h_angs, v_angs
def _mdr_normalize_horizontal_angles(rots: list[float]) -> list[float]: return rots
def _mdr_find_median(data: list[float]) -> float:
if not data:
return 0.0
s_data = sorted(data)
n = len(s_data)
return s_data[n // 2] if n % 2 == 1 else (s_data[n // 2 - 1] + s_data[n // 2]) / 2.0
def _mdr_find_mean(data: list[float]) -> float: return sum(data)/len(data) if data else 0.0
def mdr_calculate_image_rotation(frags: list[MDROcrFragment]) -> float:
all_h, all_v = [], []
for f in frags:
res = _mdr_get_rectangle_angles(f.rect)
if res:
h, v = res
all_h.extend(h)
all_v.extend(v)
if not all_h or not all_v:
return 0.0
all_h = _mdr_normalize_horizontal_angles(all_h)
all_v = [mdr_normalize_vertical_rotation(a) for a in all_v]
med_h = _mdr_find_median(all_h)
med_v = _mdr_find_median(all_v)
rot_est = ((pi / 2 - med_v) - med_h) / 2.0
while rot_est >= pi / 2:
rot_est -= pi
while rot_est < -pi / 2:
rot_est += pi
return rot_est
def mdr_calculate_rectangle_rotation(rect: MDRRectangle) -> tuple[float, float]:
res = _mdr_get_rectangle_angles(rect);
if res is None: return 0.0, pi/2.0;
h_rots, v_rots = res;
h_rots = _mdr_normalize_horizontal_angles(h_rots); v_rots = [mdr_normalize_vertical_rotation(a) for a in v_rots]
return _mdr_find_mean(h_rots), _mdr_find_mean(v_rots)
# --- MDR ONNX OCR Internals ---
class _MDR_PredictBase:
"""Base class for ONNX model prediction components."""
def get_onnx_session(self, model_path: str, use_gpu: bool):
try:
sess_opts = onnxruntime.SessionOptions()
sess_opts.log_severity_level = 3
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if use_gpu and 'CUDAExecutionProvider' in onnxruntime.get_available_providers() else ['CPUExecutionProvider']
session = onnxruntime.InferenceSession(model_path, sess_options=sess_opts, providers=providers)
print(f" ONNX session loaded: {Path(model_path).name} ({session.get_providers()})")
return session
except Exception as e:
print(f" ERROR loading ONNX session {Path(model_path).name}: {e}")
if use_gpu and 'CUDAExecutionProvider' not in onnxruntime.get_available_providers():
print(" CUDAExecutionProvider not available. Check ONNXRuntime-GPU installation and CUDA setup.")
raise e
def get_output_name(self, sess: onnxruntime.InferenceSession) -> List[str]:
return [n.name for n in sess.get_outputs()]
def get_input_name(self, sess: onnxruntime.InferenceSession) -> List[str]:
return [n.name for n in sess.get_inputs()]
def get_input_feed(self, names: List[str], img_np: np.ndarray) -> Dict[str, np.ndarray]:
return {name: img_np for name in names}
# --- MDR ONNX OCR Internals ---
class _MDR_NormalizeImage:
def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
self.scale = np.float32(eval(scale) if isinstance(scale, str) else (scale if scale is not None else 1.0 / 255.0))
mean = mean if mean is not None else [0.485, 0.456, 0.406]
std = std if std is not None else [0.229, 0.224, 0.225]
shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
self.mean = np.array(mean).reshape(shape).astype('float32')
self.std = np.array(std).reshape(shape).astype('float32')
def __call__(self, data):
img = data['image']
img = np.array(img) if isinstance(img, Image) else img
data['image'] = (img.astype('float32') * self.scale - self.mean) / self.std
return data
class _MDR_DetResizeForTest:
def __init__(self, **kwargs):
self.resize_type = 0
self.keep_ratio = False
if 'image_shape' in kwargs:
self.image_shape = kwargs['image_shape']
self.resize_type = 1
self.keep_ratio = kwargs.get('keep_ratio', False)
elif 'limit_side_len' in kwargs:
self.limit_side_len = kwargs['limit_side_len']
self.limit_type = kwargs.get('limit_type', 'min')
elif 'resize_long' in kwargs:
self.resize_type = 2
self.resize_long = kwargs.get('resize_long', 960)
else:
self.limit_side_len = 736
self.limit_type = 'min'
def __call__(self, data):
img = data['image']
src_h, src_w, _ = img.shape
if src_h + src_w < 64:
img = self._pad(img)
if self.resize_type == 0:
img, ratios = self._resize0(img)
elif self.resize_type == 2:
img, ratios = self._resize2(img)
else:
img, ratios = self._resize1(img)
if img is None:
return None
data['image'] = img
data['shape'] = np.array([src_h, src_w, ratios[0], ratios[1]])
return data
def _pad(self, im, v=0):
h, w, c = im.shape
p = np.zeros((max(32, h), max(32, w), c), np.uint8) + v
p[:h, :w, :] = im
return p
def _resize1(self, img):
rh, rw = self.image_shape
oh, ow = img.shape[:2]
if self.keep_ratio:
# Calculate new width based on aspect ratio
rw = ow * rh / oh
# Ensure width is a multiple of 32
N = ceil(rw / 32)
rw = N * 32
# Calculate resize ratios
r_h = float(rh) / oh
r_w = float(rw) / ow
# Resize image
img = cv2.resize(img, (int(rw), int(rh)))
return img, [r_h, r_w]
def _resize0(self, img):
lsl = self.limit_side_len
h, w, _ = img.shape
r = 1.0
if self.limit_type == 'max':
r = float(lsl) / max(h, w) if max(h, w) > lsl else 1.0
elif self.limit_type == 'min':
r = float(lsl) / min(h, w) if min(h, w) < lsl else 1.0
elif self.limit_type == 'resize_long':
r = float(lsl) / max(h, w)
else:
raise Exception('Unsupported limit_type')
rh = int(h * r)
rw = int(w * r)
rh = max(int(round(rh / 32) * 32), 32)
rw = max(int(round(rw / 32) * 32), 32)
if int(rw) <= 0 or int(rh) <= 0:
return None, (None, None)
img = cv2.resize(img, (int(rw), int(rh)))
r_h = rh / float(h)
r_w = rw / float(w)
return img, [r_h, r_w]
def _resize2(self, img):
h, w, _ = img.shape
rl = self.resize_long
r = float(rl) / max(h, w)
rh = int(h * r)
rw = int(w * r)
ms = 128
rh = (rh + ms - 1) // ms * ms
rw = (rw + ms - 1) // ms * ms
img = cv2.resize(img, (int(rw), int(rh)))
r_h = rh / float(h)
r_w = rw / float(w)
return img, [r_h, r_w]
class _MDR_ToCHWImage:
def __call__(self, data):
img = data['image']
img = np.array(img) if isinstance(img, Image) else img
data['image'] = img.transpose((2, 0, 1))
return data
class _MDR_KeepKeys:
def __init__(self, keep_keys, **kwargs): self.keep_keys=keep_keys
def __call__(self, data): return [data[key] for key in self.keep_keys]
def mdr_ocr_transform(
data: Any,
ops: Optional[List[Callable[[Any], Optional[Any]]]] = None
) -> Optional[Any]:
"""
Applies a sequence of transformation operations to the input data.
This function iterates through a list of operations (callables) and
applies each one sequentially to the data. If any operation
returns None, the processing stops immediately, and None is returned.
Args:
data: The initial data to be transformed. Can be of any type
compatible with the operations.
ops: An optional list of callable operations. Each operation
should accept the current state of the data and return
the transformed data or None to signal an early exit.
If None or an empty list is provided, the original data
is returned unchanged.
Returns:
The transformed data after applying all operations successfully,
or None if any operation in the sequence returned None.
"""
# Use an empty list if ops is None to avoid errors when iterating
# and to represent "no operations" gracefully.
if ops is None:
operations_to_apply = []
else:
operations_to_apply = ops
current_data = data # Use a separate variable to track the evolving data
# Sequentially apply each operation
for op in operations_to_apply:
current_data = op(current_data) # Apply the operation
# Check if the operation signaled failure or requested early exit
# by returning None.
if current_data is None:
return None # Short-circuit the pipeline
# If the loop completes without returning None, all operations succeeded.
return current_data
def mdr_ocr_create_operators(op_param_list, global_config=None):
ops = []
for operator in op_param_list:
assert isinstance(operator, dict) and len(operator)==1, "Op config error"; op_name = list(operator)[0]
param = {} if operator[op_name] is None else operator[op_name];
if global_config: param.update(global_config)
op_class_name = f"_MDR_{op_name}" # Map to internal prefixed names
if op_class_name in globals() and isinstance(globals()[op_class_name], type): ops.append(globals()[op_class_name](**param))
else: raise ValueError(f"Operator class '{op_class_name}' not found.")
return ops
class _MDR_DBPostProcess:
def __init__(self, thresh=0.3, box_thresh=0.7, max_candidates=1000, unclip_ratio=1.5, use_dilation=False, score_mode="fast", box_type='quad', **kwargs):
self.thresh = thresh
self.box_thresh = box_thresh
self.max_cand = max_candidates
self.unclip_r = unclip_ratio
self.min_sz = 3
self.score_m = score_mode
self.box_t = box_type
assert score_mode in ["slow", "fast"]
self.dila_k = np.array([[1, 1], [1, 1]], dtype=np.uint8) if use_dilation else None
def _polygons_from_bitmap(self, pred, bmp, dw, dh):
h, w = bmp.shape
boxes, scores = [], []
contours, _ = cv2.findContours((bmp * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours[:self.max_cand]:
eps = 0.002 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, eps, True)
pts = approx.reshape((-1, 2))
if pts.shape[0] < 4:
continue
score = self._box_score_fast(pred, pts.reshape(-1, 2))
if self.box_thresh > score:
continue
try:
box = self._unclip(pts, self.unclip_r)
except:
continue
if len(box) > 1:
continue
box = box.reshape(-1, 2)
_, sside = self._get_mini_boxes(box.reshape((-1, 1, 2)))
if sside < self.min_sz + 2:
continue
box = np.array(box)
box[:, 0] = np.clip(np.round(box[:, 0] / w * dw), 0, dw)
box[:, 1] = np.clip(np.round(box[:, 1] / h * dh), 0, dh)
boxes.append(box.tolist())
scores.append(score)
return boxes, scores
def _boxes_from_bitmap(self, pred, bmp, dw, dh):
h, w = bmp.shape
contours, _ = cv2.findContours((bmp * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
num_contours = min(len(contours), self.max_cand)
boxes, scores = [], []
for i in range(num_contours):
contour = contours[i]
pts, sside = self._get_mini_boxes(contour)
if sside < self.min_sz:
continue
pts = np.array(pts)
score = self._box_score_fast(pred, pts.reshape(-1, 2)) if self.score_m == "fast" else self._box_score_slow(pred, contour)
if self.box_thresh > score:
continue
try:
box = self._unclip(pts, self.unclip_r).reshape(-1, 1, 2)
except:
continue
box, sside = self._get_mini_boxes(box)
if sside < self.min_sz + 2:
continue
box = np.array(box)
box[:, 0] = np.clip(np.round(box[:, 0] / w * dw), 0, dw)
box[:, 1] = np.clip(np.round(box[:, 1] / h * dh), 0, dh)
boxes.append(box.astype("int32"))
scores.append(score)
return np.array(boxes, dtype="int32"), scores
def _unclip(self, box, ratio):
poly = Polygon(box)
dist = poly.area * ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = offset.Execute(dist)
if not expanded:
raise ValueError("Unclip failed")
return np.array(expanded[0])
def _get_mini_boxes(self, contour):
bb = cv2.minAreaRect(contour)
pts = sorted(list(cv2.boxPoints(bb)), key=lambda x: x[0])
i1, i4 = (0, 1) if pts[1][1] > pts[0][1] else (1, 0)
i2, i3 = (2, 3) if pts[3][1] > pts[2][1] else (3, 2)
box = [pts[i1], pts[i2], pts[i3], pts[i4]]
return box, min(bb[1])
def _box_score_fast(self, bmp, box):
h, w = bmp.shape[:2]
xmin = np.clip(np.floor(box[:, 0].min()).astype("int32"), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype("int32"), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype("int32"), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype("int32"), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] -= xmin
box[:, 1] -= ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype("int32"), 1)
return cv2.mean(bmp[ymin : ymax + 1, xmin : xmax + 1], mask)[0] if np.sum(mask) > 0 else 0.0
def _box_score_slow(self, bmp, contour): # Not used if fast
h, w = bmp.shape[:2]
contour = np.reshape(contour.copy(), (-1, 2))
xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
contour[:, 0] -= xmin
contour[:, 1] -= ymin
cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype("int32"), 1)
return cv2.mean(bmp[ymin : ymax + 1, xmin : xmax + 1], mask)[0] if np.sum(mask) > 0 else 0.0
def __call__(self, outs_dict, shape_list):
pred = outs_dict['maps'][:, 0, :, :]
seg = pred > self.thresh
boxes_batch = []
for batch_idx in range(pred.shape[0]):
sh, sw, _, _ = shape_list[batch_idx]
mask = cv2.dilate(np.array(seg[batch_idx]).astype(np.uint8), self.dila_k) if self.dila_k is not None else seg[batch_idx]
if self.box_t == 'poly':
boxes, _ = self._polygons_from_bitmap(pred[batch_idx], mask, sw, sh)
elif self.box_t == 'quad':
boxes, _ = self._boxes_from_bitmap(pred[batch_idx], mask, sw, sh)
else:
raise ValueError("box_type must be 'quad' or 'poly'")
boxes_batch.append({'points': boxes})
return boxes_batch
class _MDR_TextDetector(_MDR_PredictBase):
def __init__(self, args):
super().__init__()
self.args = args
pre_ops = [{'DetResizeForTest': {'limit_side_len': args.det_limit_side_len, 'limit_type': args.det_limit_type}}, {'NormalizeImage': {'std': [0.229,0.224,0.225], 'mean': [0.485,0.456,0.406], 'scale': '1./255.', 'order': 'hwc'}}, {'ToCHWImage': None}, {'KeepKeys': {'keep_keys': ['image', 'shape']}}]
self.pre_op = mdr_ocr_create_operators(pre_ops)
post_params = {'thresh': args.det_db_thresh, 'box_thresh': args.det_db_box_thresh, 'max_candidates': 1000, 'unclip_ratio': args.det_db_unclip_ratio, 'use_dilation': args.use_dilation, 'score_mode': args.det_db_score_mode, 'box_type': args.det_box_type}
self.post_op = _MDR_DBPostProcess(**post_params)
self.sess = self.get_onnx_session(args.det_model_dir, args.use_gpu)
self.input_name = self.get_input_name(self.sess)
self.output_name = self.get_output_name(self.sess)
def _order_pts(self, pts):
r = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
r[0] = pts[np.argmin(s)]
r[2] = pts[np.argmax(s)]
tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
d = np.diff(np.array(tmp), axis=1)
r[1] = tmp[np.argmin(d)]
r[3] = tmp[np.argmax(d)]
return r
def _clip_pts(self, pts, h, w):
pts[:, 0] = np.clip(pts[:, 0], 0, w - 1)
pts[:, 1] = np.clip(pts[:, 1], 0, h - 1)
return pts
def _filter_quad(self, boxes, shape):
h, w = shape[0:2]
new_boxes = []
for box in boxes:
box = np.array(box) if isinstance(box, list) else box
box = self._order_pts(box)
box = self._clip_pts(box, h, w)
rw = int(np.linalg.norm(box[0] - box[1]))
rh = int(np.linalg.norm(box[0] - box[3]))
if rw <= 3 or rh <= 3:
continue
new_boxes.append(box)
return np.array(new_boxes)
def _filter_poly(self, boxes, shape):
h, w = shape[0:2]
new_boxes = []
for box in boxes:
box = np.array(box) if isinstance(box, list) else box
box = self._clip_pts(box, h, w)
if Polygon(box).area < 10:
continue
new_boxes.append(box)
return np.array(new_boxes)
def __call__(self, img):
ori_im = img.copy()
data = {"image": img}
data = mdr_ocr_transform(data, self.pre_op)
if data is None:
return None
img, shape_list = data
if img is None:
return None
img = np.expand_dims(img, axis=0)
shape_list = np.expand_dims(shape_list, axis=0)
img = img.copy()
inputs = self.get_input_feed(self.input_name, img)
outputs = self.sess.run(self.output_name, input_feed=inputs)
preds = {"maps": outputs[0]}
post_res = self.post_op(preds, shape_list)
boxes = post_res[0]['points']
return self._filter_poly(boxes, ori_im.shape) if self.args.det_box_type == 'poly' else self._filter_quad(boxes, ori_im.shape)
class _MDR_ClsPostProcess:
def __init__(self, label_list=None, **kwargs): self.labels = label_list if label_list else {0:'0', 1:'180'}
def __call__(self, preds, label=None, *args, **kwargs):
preds = np.array(preds) if not isinstance(preds, np.ndarray) else preds; idxs = preds.argmax(axis=1)
return [(self.labels[idx], float(preds[i,idx])) for i,idx in enumerate(idxs)]
class _MDR_TextClassifier(_MDR_PredictBase):
def __init__(self, args):
super().__init__()
self.shape = tuple(map(int, args.cls_image_shape.split(','))) if isinstance(args.cls_image_shape, str) else args.cls_image_shape
self.batch_num = args.cls_batch_num
self.thresh = args.cls_thresh
self.post_op = _MDR_ClsPostProcess(label_list=args.label_list)
self.sess = self.get_onnx_session(args.cls_model_dir, args.use_gpu)
self.input_name = self.get_input_name(self.sess)
self.output_name = self.get_output_name(self.sess)
def _resize_norm(self, img):
imgC, imgH, imgW = self.shape
h, w = img.shape[:2]
r = w / float(h) if h > 0 else 0
rw = int(ceil(imgH * r))
rw = min(rw, imgW)
resized = cv2.resize(img, (rw, imgH))
resized = resized.astype("float32")
if imgC == 1:
resized = resized / 255.0
resized = resized[np.newaxis, :]
else:
resized = resized.transpose((2, 0, 1)) / 255.0
resized -= 0.5
resized /= 0.5
padding = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding[:, :, 0:rw] = resized
return padding
def __call__(self, img_list):
if not img_list:
return img_list, []
img_list_cp = copy.deepcopy(img_list)
num = len(img_list_cp)
ratios = [img.shape[1] / float(img.shape[0]) if img.shape[0] > 0 else 0 for img in img_list_cp]
indices = np.argsort(np.array(ratios))
results = [["", 0.0]] * num
batch_n = self.batch_num
for start in range(0, num, batch_n):
end = min(num, start + batch_n)
batch = []
for i in range(start, end):
batch.append(self._resize_norm(img_list_cp[indices[i]])[np.newaxis, :])
if not batch:
continue
batch = np.concatenate(batch, axis=0).copy()
inputs = self.get_input_feed(self.input_name, batch)
outputs = self.sess.run(self.output_name, input_feed=inputs)
cls_out = self.post_op(outputs[0])
for i in range(len(cls_out)):
orig_idx = indices[start + i]
label, score = cls_out[i]
results[orig_idx] = [label, score]
if "180" in label and score > self.thresh:
img_list[orig_idx] = cv2.rotate(img_list[orig_idx], cv2.ROTATE_180)
return img_list, results
class _MDR_BaseRecLabelDecode:
def __init__(self, char_path=None, use_space=False):
self.beg, self.end, self.rev = "sos", "eos", False
self.chars = []
if char_path is None:
self.chars = list("0123456789abcdefghijklmnopqrstuvwxyz")
else:
try:
with open(char_path, "rb") as f:
self.chars = [l.decode("utf-8").strip("\n\r") for l in f]
if use_space:
self.chars.append(" ")
if any("\u0600" <= c <= "\u06FF" for c in self.chars):
self.rev = True
except FileNotFoundError:
print(f"Warn: Dict not found {char_path}")
self.chars = list("0123456789abcdefghijklmnopqrstuvwxyz")
if use_space:
self.chars.append(" ")
d_char = self.add_special_char(list(self.chars))
self.dict = {c: i for i, c in enumerate(d_char)}
self.character = d_char
def add_special_char(self, chars):
return chars
def get_ignored_tokens(self):
return []
def _reverse(self, pred):
res = []
cur = ""
for c in pred:
if not re.search("[a-zA-Z0-9 :*./%+-]", c):
if cur != "":
res.extend([cur, c])
else:
res.extend([c])
cur = ""
else:
cur += c
if cur != "":
res.append(cur)
return "".join(res[::-1])
def decode(self, idxs, probs=None, remove_dup=False):
res = []
ignored = self.get_ignored_tokens()
bs = len(idxs)
for b_idx in range(bs):
sel = np.ones(len(idxs[b_idx]), dtype=bool)
if remove_dup:
sel[1:] = idxs[b_idx][1:] != idxs[b_idx][:-1]
for ig_tok in ignored:
sel &= idxs[b_idx] != ig_tok
char_l = [
self.character[tid]
for tid in idxs[b_idx][sel]
if 0 <= tid < len(self.character)
]
conf_l = probs[b_idx][sel] if probs is not None else [1] * len(char_l)
if len(conf_l) == 0:
conf_l = [0]
txt = "".join(char_l)
if self.rev:
txt = self._reverse(txt)
res.append((txt, float(np.mean(conf_l))))
return res
class _MDR_CTCLabelDecode(_MDR_BaseRecLabelDecode):
def __init__(self, char_path=None, use_space=False, **kwargs): super().__init__(char_path, use_space)
def add_special_char(self, chars): return ["blank"]+chars
def get_ignored_tokens(self): return [0] # blank index
def __call__(self, preds, label=None, *args, **kwargs):
preds = preds[-1] if isinstance(preds,(tuple,list)) else preds; preds = np.array(preds) if not isinstance(preds,np.ndarray) else preds
idxs=preds.argmax(axis=2); probs=preds.max(axis=2); txt=self.decode(idxs, probs, remove_dup=True); return txt
class _MDR_TextRecognizer(_MDR_PredictBase):
def __init__(self, args):
super().__init__()
shape_str = getattr(args, 'rec_image_shape', "3,48,320")
self.shape = tuple(map(int, shape_str.split(',')))
self.batch_num = getattr(args, 'rec_batch_num', 6)
self.algo = getattr(args, 'rec_algorithm', 'SVTR_LCNet')
self.post_op = _MDR_CTCLabelDecode(char_path=args.rec_char_dict_path, use_space=getattr(args, 'use_space_char', True))
self.sess = self.get_onnx_session(args.rec_model_dir, args.use_gpu)
self.input_name = self.get_input_name(self.sess)
self.output_name = self.get_output_name(self.sess)
def _resize_norm(self, img, max_r):
imgC, imgH, imgW = self.shape
h, w = img.shape[:2]
if h == 0 or w == 0:
return np.zeros((imgC, imgH, imgW), dtype=np.float32)
r = w / float(h)
tw = min(imgW, int(ceil(imgH * max(r, max_r))))
tw = max(1, tw)
resized = cv2.resize(img, (tw, imgH))
resized = resized.astype("float32")
if imgC == 1 and len(resized.shape) == 3:
resized = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)
resized = resized[:, :, np.newaxis]
if len(resized.shape) == 2:
resized = resized[:, :, np.newaxis]
resized = resized.transpose((2, 0, 1)) / 255.0
resized -= 0.5
resized /= 0.5
padding = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding[:, :, 0:tw] = resized
return padding
def __call__(self, img_list):
if not img_list:
return []
num = len(img_list)
ratios = [img.shape[1] / float(img.shape[0]) if img.shape[0] > 0 else 0 for img in img_list]
indices = np.argsort(np.array(ratios))
results = [["", 0.0]] * num
batch_n = self.batch_num
for start in range(0, num, batch_n):
end = min(num, start + batch_n)
batch = []
max_r_batch = 0
for i in range(start, end):
h, w = img_list[indices[i]].shape[0:2]
if h > 0:
max_r_batch = max(max_r_batch, w / float(h))
for i in range(start, end):
batch.append(self._resize_norm(img_list[indices[i]], max_r_batch)[np.newaxis, :])
if not batch:
continue
batch = np.concatenate(batch, axis=0).copy()
inputs = self.get_input_feed(self.input_name, batch)
outputs = self.sess.run(self.output_name, input_feed=inputs)
rec_out = self.post_op(outputs[0])
for i in range(len(rec_out)):
results[indices[start + i]] = rec_out[i]
return results
# --- MDR ONNX OCR System ---
class _MDR_TextSystem:
def __init__(self, args):
class ArgsObject: # Helper to access dict args with dot notation
def __init__(self, **entries): self.__dict__.update(entries)
if isinstance(args, dict): args = ArgsObject(**args)
self.args = args
self.detector = _MDR_TextDetector(args)
self.recognizer = _MDR_TextRecognizer(args)
self.use_cls = getattr(args, 'use_angle_cls', True)
self.drop_score = getattr(args, 'drop_score', 0.5)
self.classifier = _MDR_TextClassifier(args) if self.use_cls else None
self.crop_idx = 0
self.save_crop = getattr(args, 'save_crop_res', False)
self.crop_dir = getattr(args, 'crop_res_save_dir', "./output/mdr_crop_res")
def _sort_boxes(self, boxes):
if boxes is None or len(boxes)==0: return []
def key(box): min_y=min(p[1] for p in box); min_x=min(p[0] for p in box); return (min_y, min_x)
try: return list(sorted(boxes, key=key))
except: return list(boxes) # Fallback
def __call__(self, img, classify=True):
ori_im = img.copy()
boxes = self.detector(img)
if boxes is None or len(boxes) == 0:
return [], []
boxes = self._sort_boxes(boxes)
crops = []
for b in boxes:
try:
crops.append(mdr_get_rotated_crop(ori_im, b)) # Use renamed util
except:
crops.append(None)
valid_idxs = [i for i, c in enumerate(crops) if c is not None]
if not valid_idxs:
return [], []
crops = [crops[i] for i in valid_idxs]
boxes = [boxes[i] for i in valid_idxs]
if self.use_cls and self.classifier and classify:
try:
crops, _ = self.classifier(crops) # Ignore cls results, just use rotated crops
except Exception as e:
print(f"Classifier error: {e}")
try:
rec_res = self.recognizer(crops)
except Exception as e:
print(f"Recognizer error: {e}")
return boxes, [["", 0.0]] * len(boxes)
final_boxes, final_rec = [], []
for box, res in zip(boxes, rec_res):
txt, score = res
if score >= self.drop_score:
final_boxes.append(box)
final_rec.append(res)
if self.save_crop:
self._save_crops(crops, rec_res)
return final_boxes, final_rec
def _save_crops(self, crops, recs):
mdr_ensure_directory(self.crop_dir)
num = len(crops)
for i in range(num):
txt, score = recs[i]
safe = re.sub(r'\W+', '_', txt)[:20]
fname = f"crop_{self.crop_idx + i}_{safe}_{score:.2f}.jpg"
cv2.imwrite(os.path.join(self.crop_dir, fname), crops[i])
self.crop_idx += num
# --- MDR ONNX OCR Utilities ---
def mdr_get_rotated_crop(img, points):
"""Crops and perspective-transforms a quadrilateral region."""
pts = np.array(points, dtype="float32")
assert len(pts) == 4
w = int(max(np.linalg.norm(pts[0] - pts[1]), np.linalg.norm(pts[2] - pts[3])))
h = int(max(np.linalg.norm(pts[0] - pts[3]), np.linalg.norm(pts[1] - pts[2])))
std = np.float32([[0, 0], [w, 0], [w, h], [0, h]])
M = cv2.getPerspectiveTransform(pts, std)
dst = cv2.warpPerspective(img, M, (w, h), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC)
dh, dw = dst.shape[0:2]
if dh > 0 and dw > 0 and dh * 1.0 / dw >= 1.5:
dst = cv2.rotate(dst, cv2.ROTATE_90_CLOCKWISE)
return dst
def mdr_get_min_area_crop(img, points):
"""Crops the minimum area rectangle containing the points."""
bb = cv2.minAreaRect(np.array(points).astype(np.int32))
box_pts = cv2.boxPoints(bb)
return mdr_get_rotated_crop(img, box_pts)
# --- MDR Layout Processing ---
_MDR_INCLUDES_MIN_RATE = 0.99
class _MDR_OverlapMatrixContext:
def __init__(self, layouts: list[MDRLayoutElement]):
length = len(layouts); self.polys: list[Polygon|None] = []
for l in layouts:
try: p = Polygon(l.rect); self.polys.append(p if p.is_valid else None)
except: self.polys.append(None)
self.matrix = [[0.0]*length for _ in range(length)]; self.removed = set()
for i in range(length):
p1 = self.polys[i];
if p1 is None: continue; self.matrix[i][i] = 1.0
for j in range(i+1, length):
p2 = self.polys[j];
if p2 is None: continue
r_ij = self._rate(p1, p2); r_ji = self._rate(p2, p1); self.matrix[i][j]=r_ij; self.matrix[j][i]=r_ji
def _rate(self, p1: Polygon, p2: Polygon) -> float: # Rate p1 covers p2
try:
inter = p1.intersection(p2)
except:
return 0.0
if inter.is_empty or inter.area < 1e-6:
return 0.0
_, _, ix1, iy1 = inter.bounds
iw = ix1 - inter.bounds[0]
ih = iy1 - inter.bounds[1]
_, _, px1, py1 = p2.bounds
pw = px1 - p2.bounds[0]
ph = py1 - p2.bounds[1]
if pw < 1e-6 or ph < 1e-6:
return 0.0
wr = min(iw / pw, 1.0)
hr = min(ih / ph, 1.0)
return (wr + hr) / 2.0
def others(self, idx: int):
for i, r in enumerate(self.matrix[idx]):
if i != idx and i not in self.removed: yield r
def includes(self, idx: int): # Layouts included BY idx
for i, r in enumerate(self.matrix[idx]):
if i != idx and i not in self.removed and r >= _MDR_INCLUDES_MIN_RATE:
if self.matrix[i][idx] < _MDR_INCLUDES_MIN_RATE: yield i
def mdr_remove_overlap_layouts(layouts: list[MDRLayoutElement]) -> list[MDRLayoutElement]:
if not layouts:
return []
ctx = _MDR_OverlapMatrixContext(layouts)
prev_removed = -1
while len(ctx.removed) != prev_removed:
prev_removed = len(ctx.removed)
current_removed = set()
for i in range(len(layouts)):
if i in ctx.removed or i in current_removed:
continue
li = layouts[i]
pi = ctx.polys[i]
if pi is None:
current_removed.add(i)
continue
contained = False
for j in range(len(layouts)):
if i == j or j in ctx.removed or j in current_removed:
continue
if ctx.matrix[j][i] >= _MDR_INCLUDES_MIN_RATE and ctx.matrix[i][j] < _MDR_INCLUDES_MIN_RATE:
contained = True
break
if contained:
current_removed.add(i)
continue
contained_by_i = list(ctx.includes(i))
if contained_by_i:
for j in contained_by_i:
if j not in ctx.removed and j not in current_removed:
li.fragments.extend(layouts[j].fragments)
current_removed.add(j)
li.fragments.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0]))
ctx.removed.update(current_removed)
return [l for i, l in enumerate(layouts) if i not in ctx.removed]
def _mdr_split_fragments_into_lines(frags: list[MDROcrFragment]) -> Generator[list[MDROcrFragment], None, None]:
if not frags:
return
frags.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0]))
group, y_sum, h_sum = [], 0.0, 0.0
for f in frags:
_, y1, _, y2 = f.rect.wrapper
h = y2 - y1
med_y = (y1 + y2) / 2.0
if h <= 0:
continue
if not group:
group.append(f)
y_sum, h_sum = med_y, h
else:
g_len = len(group)
avg_med_y = y_sum / g_len
avg_h = h_sum / g_len
max_dev = avg_h * 0.40
if abs(med_y - avg_med_y) > max_dev:
yield group
group, y_sum, h_sum = [f], med_y, h
else:
group.append(f)
y_sum += med_y
h_sum += h
if group:
yield group
def mdr_merge_fragments_into_lines(orig_frags: list[MDROcrFragment]) -> list[MDROcrFragment]:
merged = []
for group in _mdr_split_fragments_into_lines(orig_frags):
if not group:
continue
if len(group) == 1:
merged.append(group[0])
continue
group.sort(key=lambda f: f.rect.lt[0])
min_order = min(f.order for f in group if hasattr(f, 'order')) if group else 0
texts, rank_w, txt_len = [], 0.0, 0
x1, y1, x2, y2 = float("inf"), float("inf"), float("-inf"), float("-inf")
for f in group:
fx1, fy1, fx2, fy2 = f.rect.wrapper
x1, y1, x2, y2 = min(x1, fx1), min(y1, fy1), max(x2, fx2), max(y2, fy2)
t = f.text
l = len(t)
if l > 0:
texts.append(t)
rank_w += f.rank * l
txt_len += l
if txt_len == 0:
continue
m_txt = " ".join(texts)
m_rank = rank_w / txt_len if txt_len > 0 else 0.0
m_rect = MDRRectangle(lt=(x1, y1), rt=(x2, y1), lb=(x1, y2), rb=(x2, y2))
merged.append(MDROcrFragment(order=min_order, text=m_txt, rank=m_rank, rect=m_rect))
merged.sort(key=lambda f: (f.order, f.rect.lt[1], f.rect.lt[0]))
for i, f in enumerate(merged):
f.order = i
return merged
# --- MDR Layout Processing ---
_MDR_CORRECTION_MIN_OVERLAP = 0.5
def mdr_correct_layout_fragments(ocr_engine: 'MDROcrEngine', source_img: Image, layout: MDRLayoutElement):
if not layout.fragments:
return
try:
x1, y1, x2, y2 = layout.rect.wrapper
margin = 5
crop_box = (max(0, round(x1) - margin), max(0, round(y1) - margin), min(source_img.width, round(x2) + margin), min(source_img.height, round(y2) + margin))
if crop_box[0] >= crop_box[2] or crop_box[1] >= crop_box[3]:
return
cropped = source_img.crop(crop_box)
off_x, off_y = crop_box[0], crop_box[1]
except Exception as e:
print(f"Correct: Crop error: {e}")
return
try:
cropped_np = np.array(cropped.convert("RGB"))[:, :, ::-1]
new_frags_local = list(ocr_engine.find_text_fragments(cropped_np))
except Exception as e:
print(f"Correct: OCR error: {e}")
return
new_frags_global = []
for f in new_frags_local:
r = f.rect
lt, rt, lb, rb = r.lt, r.rt, r.lb, r.rb
f.rect = MDRRectangle(lt=(lt[0] + off_x, lt[1] + off_y), rt=(rt[0] + off_x, rt[1] + off_y), lb=(lb[0] + off_x, lb[1] + off_y), rb=(rb[0] + off_x, rb[1] + off_y))
new_frags_global.append(f)
orig_frags = layout.fragments
matched, unmatched_orig = [], []
used_new = set()
for i, orig_f in enumerate(orig_frags):
best_j, best_rate = -1, -1.0
try:
poly_o = Polygon(orig_f.rect)
except:
continue
if not poly_o.is_valid:
continue
for j, new_f in enumerate(new_frags_global):
if j in used_new:
continue
try:
poly_n = Polygon(new_f.rect)
except:
continue
if not poly_n.is_valid:
continue
try:
inter = poly_o.intersection(poly_n)
union = poly_o.union(poly_n)
except:
continue
rate = inter.area / union.area if union.area > 1e-6 else 0.0
if rate > _MDR_CORRECTION_MIN_OVERLAP and rate > best_rate:
best_rate = rate
best_j = j
if best_j != -1:
matched.append((orig_f, new_frags_global[best_j]))
used_new.add(best_j)
else:
unmatched_orig.append(orig_f)
unmatched_new = [f for j, f in enumerate(new_frags_global) if j not in used_new]
final = [n if n.rank >= o.rank else o for o, n in matched]
final.extend(unmatched_orig)
final.extend(unmatched_new)
layout.fragments = final
layout.fragments.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0]))
# --- MDR OCR Engine ---
_MDR_OCR_MODELS = {"det": ("ppocrv4","det","det.onnx"), "cls": ("ppocrv4","cls","cls.onnx"), "rec": ("ppocrv4","rec","rec.onnx"), "keys": ("ch_ppocr_server_v2.0","ppocr_keys_v1.txt")}
_MDR_OCR_URL_BASE = "https://huggingface.co/moskize/OnnxOCR/resolve/main/"
@dataclass
class _MDR_ONNXParams:
# Attributes without default values
use_gpu: bool
det_model_dir: str
cls_model_dir: str
rec_model_dir: str
rec_char_dict_path: str
# Attributes with default values (Group 1)
use_angle_cls: bool = True
rec_image_shape: str = "3,48,320"
cls_image_shape: str = "3,48,192"
cls_batch_num: int = 6
cls_thresh: float = 0.9
label_list: List[str] = field(default_factory=lambda: ['0', '180'])
# Attributes with default values (Group 2 - Detection)
det_algorithm: str = "DB"
det_limit_side_len: int = 960
det_limit_type: str = 'max'
det_db_thresh: float = 0.3
det_db_box_thresh: float = 0.6
det_db_unclip_ratio: float = 1.5
use_dilation: bool = False
det_db_score_mode: str = 'fast'
det_box_type: str = 'quad'
# Attributes with default values (Group 3 - Recognition & General)
rec_batch_num: int = 6
drop_score: float = 0.5
rec_algorithm: str = "SVTR_LCNet"
use_space_char: bool = True
# Attributes with default values (Group 4 - Output & Logging)
save_crop_res: bool = False
crop_res_save_dir: str = "./output/mdr_crop_res"
show_log: bool = False
use_onnx: bool = True
class MDROcrEngine:
"""Handles OCR detection and recognition using ONNX models."""
def __init__(self, device: Literal["cpu", "cuda"], model_dir_path: str):
self._device = device; self._model_dir = mdr_ensure_directory(model_dir_path)
self._text_system: _MDR_TextSystem | None = None; self._onnx_params: _MDR_ONNXParams | None = None
self._ensure_models(); self._get_system() # Init on creation
def _ensure_models(self):
for key, parts in _MDR_OCR_MODELS.items():
fp = Path(self._model_dir) / Path(*parts)
if not fp.exists(): print(f"Downloading MDR OCR model: {fp.name}..."); url = _MDR_OCR_URL_BASE + "/".join(parts); mdr_download_model(url, fp)
def _get_system(self) -> _MDR_TextSystem | None:
if self._text_system is None:
paths = {k: str(Path(self._model_dir)/Path(*p)) for k,p in _MDR_OCR_MODELS.items()}
self._onnx_params = _MDR_ONNXParams(use_gpu=(self._device=="cuda"), det_model_dir=paths["det"], cls_model_dir=paths["cls"], rec_model_dir=paths["rec"], rec_char_dict_path=paths["keys"])
try: self._text_system = _MDR_TextSystem(self._onnx_params); print(f"MDR OCR System initialized.")
except Exception as e: print(f"ERROR initializing MDR OCR System: {e}"); self._text_system = None
return self._text_system
def find_text_fragments(self, image_np: np.ndarray) -> Generator[MDROcrFragment, None, None]:
"""Finds and recognizes text fragments in a NumPy image (BGR)."""
system = self._get_system()
if system is None: print("MDR OCR System unavailable."); return
img = self._preprocess(image_np)
try: boxes, recs = system(img)
except Exception as e: print(f"MDR OCR prediction error: {e}"); return
if not boxes or not recs: return
for box_pts, (txt, conf) in zip(boxes, recs):
if not txt or mdr_is_whitespace(txt) or conf < 0.1: continue
pts = [(float(p[0]), float(p[1])) for p in box_pts]
if len(pts) == 4:
r = MDRRectangle(lt=pts[0], rt=pts[1], rb=pts[2], lb=pts[3])
if r.is_valid and r.area > 1:
yield MDROcrFragment(order=-1, text=txt, rank=float(conf), rect=r)
def _preprocess(self, img: np.ndarray) -> np.ndarray:
if len(img.shape) == 3 and img.shape[2] == 4:
a = img[:, :, 3] / 255.0
bg = (255, 255, 255)
new = np.zeros_like(img[:, :, :3])
[setattr(new[:, :, i], 'flags.writeable', True) for i in range(3)]
[np.copyto(new[:, :, i], (bg[i] * (1 - a) + img[:, :, i] * a)) for i in range(3)]
img = new.astype(np.uint8)
elif len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif not (len(img.shape) == 3 and img.shape[2] == 3):
raise ValueError("Unsupported image format")
return img
# --- MDR Layout Reading Internals ---
_MDR_MAX_LEN = 510; _MDR_CLS_ID = 0; _MDR_SEP_ID = 2; _MDR_PAD_ID = 1
def mdr_boxes_to_reader_inputs(boxes: List[List[int]], max_len=_MDR_MAX_LEN) -> Dict[str, torch.Tensor]:
t_boxes = boxes[:max_len]; i_boxes = [[0,0,0,0]] + t_boxes + [[0,0,0,0]]
i_ids = [_MDR_CLS_ID] + [_MDR_PAD_ID]*len(t_boxes) + [_MDR_SEP_ID]
a_mask = [1]*len(i_ids); pad_len = (max_len+2) - len(i_ids)
if pad_len > 0: i_boxes.extend([[0,0,0,0]]*pad_len); i_ids.extend([_MDR_PAD_ID]*pad_len); a_mask.extend([0]*pad_len)
return {"bbox": torch.tensor([i_boxes]), "input_ids": torch.tensor([i_ids]), "attention_mask": torch.tensor([a_mask])}
def mdr_prepare_reader_inputs(inputs: Dict[str, torch.Tensor], model: LayoutLMv3ForTokenClassification) -> Dict[str, torch.Tensor]:
return {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
def mdr_parse_reader_logits(logits: torch.Tensor, length: int) -> List[int]:
if length == 0:
return []
rel_logits = logits[1 : length + 1, :length]
orders = rel_logits.argmax(dim=1).tolist()
while True:
conflicts = defaultdict(list)
[conflicts[order].append(idx) for idx, order in enumerate(orders)]
conflicting_orders = {o: idxs for o, idxs in conflicts.items() if len(idxs) > 1}
if not conflicting_orders:
break
for order, idxs in conflicting_orders.items():
best_idx = -1
max_logit = -float('inf')
for idx in idxs:
logit = rel_logits[idx, order].item()
if logit > max_logit:
max_logit = logit
best_idx = idx
for idx in idxs:
if idx != best_idx:
orig_logit = rel_logits[idx, order].item()
rel_logits[idx, order] = -float('inf')
orders[idx] = rel_logits[idx, :].argmax().item()
rel_logits[idx, order] = orig_logit
return orders
# --- MDR Layout Reading Engine ---
@dataclass
class _MDR_ReaderBBox: layout_index: int; fragment_index: int; virtual: bool; order: int; value: tuple[float, float, float, float]
class MDRLayoutReader:
"""Determines reading order of layout elements using LayoutLMv3."""
def __init__(self, model_path: str):
self._model_path = model_path; self._model: LayoutLMv3ForTokenClassification | None = None
self._device = "cuda" if torch.cuda.is_available() else "cpu"
def _get_model(self) -> LayoutLMv3ForTokenClassification | None:
if self._model is None:
cache = mdr_ensure_directory(self._model_path); name = "microsoft/layoutlmv3-base"; h_path = os.path.join(cache, "models--hantian--layoutreader")
local = os.path.exists(h_path); load_p = h_path if local else name
try:
self._model = LayoutLMv3ForTokenClassification.from_pretrained(load_p, cache_dir=cache, local_files_only=local, num_labels=_MDR_MAX_LEN+1)
self._model.to(self._device); self._model.eval(); print(f"MDR LayoutReader loaded on {self._device}.")
except Exception as e: print(f"ERROR loading MDR LayoutReader: {e}"); self._model = None
return self._model
def determine_reading_order(self, layouts: list[MDRLayoutElement], size: tuple[int, int]) -> list[MDRLayoutElement]:
w, h = size
if w <= 0 or h <= 0 or not layouts:
return layouts
model = self._get_model()
if model is None: # Fallback geometric sort
layouts.sort(key=lambda l: (l.rect.lt[1], l.rect.lt[0]))
nfo = 0
for l in layouts:
l.fragments.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0]))
[setattr(f, 'order', i + nfo) for i, f in enumerate(l.fragments)]
nfo += len(l.fragments)
return layouts
bbox_list = self._prepare_bboxes(layouts, w, h)
if bbox_list is None or len(bbox_list) == 0:
return layouts
l_size = 1000.0
xs = l_size / float(w)
ys = l_size / float(h)
scaled_bboxes = []
for bbox in bbox_list:
x0, y0, x1, y1 = bbox.value
sx0 = max(0, min(l_size - 1, round(x0 * xs)))
sy0 = max(0, min(l_size - 1, round(y0 * ys)))
sx1 = max(0, min(l_size - 1, round(x1 * xs)))
sy1 = max(0, min(l_size - 1, round(y1 * ys)))
scaled_bboxes.append([min(sx0, sx1), min(sy0, sy1), max(sx0, sx1), max(sy0, sy1)])
orders = []
try:
with torch.no_grad():
inputs = mdr_boxes_to_reader_inputs(scaled_bboxes)
inputs = mdr_prepare_reader_inputs(inputs, model)
logits = model(**inputs).logits.cpu().squeeze(0)
orders = mdr_parse_reader_logits(logits, len(bbox_list))
except Exception as e:
print(f"MDR LayoutReader prediction error: {e}")
return layouts # Fallback
if len(orders) != len(bbox_list):
print("MDR LayoutReader order mismatch")
return layouts # Fallback
for i, order_idx in enumerate(orders):
bbox_list[i].order = order_idx
return self._apply_order(layouts, bbox_list)
def _prepare_bboxes(self, layouts: list[MDRLayoutElement], w: int, h: int) -> list[_MDR_ReaderBBox] | None:
line_h = self._estimate_line_h(layouts)
bbox_list = []
for i, l in enumerate(layouts):
if l.cls == MDRLayoutClass.PLAIN_TEXT and l.fragments:
[bbox_list.append(_MDR_ReaderBBox(i, j, False, -1, f.rect.wrapper)) for j, f in enumerate(l.fragments)]
else:
bbox_list.extend(self._gen_virtual(l, i, line_h, w, h))
if len(bbox_list) > _MDR_MAX_LEN:
print(f"Too many boxes ({len(bbox_list)}>{_MDR_MAX_LEN})")
return None
bbox_list.sort(key=lambda b: (b.value[1], b.value[0]))
return bbox_list
def _apply_order(self, layouts: list[MDRLayoutElement], bbox_list: list[_MDR_ReaderBBox]) -> list[MDRLayoutElement]:
layout_map = defaultdict(list)
[layout_map[b.layout_index].append(b) for b in bbox_list]
layout_orders = [(idx, self._median([b.order for b in bboxes])) for idx, bboxes in layout_map.items() if bboxes]
layout_orders.sort(key=lambda x: x[1])
sorted_layouts = [layouts[idx] for idx, _ in layout_orders]
nfo = 0
for l in sorted_layouts:
frags = l.fragments
if not frags:
continue
frag_bboxes = [b for b in layout_map[layouts.index(l)] if not b.virtual]
if frag_bboxes:
idx_to_order = {b.fragment_index: b.order for b in frag_bboxes}
frags.sort(key=lambda f: idx_to_order.get(frags.index(f), float('inf')))
else:
frags.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0]))
for frag in frags:
frag.order = nfo
nfo += 1
return sorted_layouts
def _estimate_line_h(self, layouts: list[MDRLayoutElement]) -> float:
heights = [f.rect.size[1] for l in layouts for f in l.fragments if f.rect.size[1] > 0]
return self._median(heights) if heights else 15.0
def _gen_virtual(self, l: MDRLayoutElement, l_idx: int, line_h: float, pw: int, ph: int) -> Generator[_MDR_ReaderBBox, None, None]:
x0, y0, x1, y1 = l.rect.wrapper
lh = y1 - y0
lw = x1 - x0
if lh <= 0 or lw <= 0 or line_h <= 0:
yield _MDR_ReaderBBox(l_idx, -1, True, -1, (x0, y0, x1, y1))
return
lines = 1
if lh > line_h * 1.5:
if lh <= ph * 0.25 or lw >= pw * 0.5:
lines = 3
elif lw > pw * 0.25:
lines = 3 if lw > pw * 0.4 else 2
elif lw <= pw * 0.25:
lines = max(1, int(lh / (line_h * 1.5))) if lh / lw > 1.5 else 2
else:
lines = max(1, int(round(lh / line_h)))
lines = max(1, lines)
act_line_h = lh / lines
cur_y = y0
for i in range(lines):
ly0 = max(0, min(ph, cur_y))
ly1 = max(0, min(ph, cur_y + act_line_h))
lx0 = max(0, min(pw, x0))
lx1 = max(0, min(pw, x1))
if ly1 > ly0 and lx1 > lx0:
yield _MDR_ReaderBBox(l_idx, -1, True, -1, (lx0, ly0, lx1, ly1))
cur_y += act_line_h
def _median(self, nums: list[float|int]) -> float:
if not nums:
return 0.0
s_nums = sorted(nums)
n = len(s_nums)
return float(s_nums[n // 2]) if n % 2 == 1 else float((s_nums[n // 2 - 1] + s_nums[n // 2]) / 2.0)
# --- MDR LaTeX Extractor ---
class MDRLatexExtractor:
"""Extracts LaTeX from formula images using pix2tex."""
def __init__(self, model_path: str):
self._model_path = model_path; self._model: LatexOCR | None = None
self._device = "cuda" if torch.cuda.is_available() else "cpu"
def extract(self, image: Image) -> str | None:
if LatexOCR is None: return None;
image = mdr_expand_image(image, 0.1)
model = self._get_model()
if model is None: return None;
try:
with torch.no_grad(): img_rgb = image.convert('RGB') if image.mode!='RGB' else image; latex = model(img_rgb); return latex if latex else None
except Exception as e: print(f"MDR LaTeX error: {e}"); return None
def _get_model(self) -> LatexOCR | None:
if self._model is None and LatexOCR is not None:
mdr_ensure_directory(self._model_path)
wp = Path(self._model_path) / "weights.pth"
rp = Path(self._model_path) / "image_resizer.pth"
cp = Path(self._model_path) / "config.yaml"
if not wp.exists() or not rp.exists():
print("Downloading MDR LaTeX models...")
self._download()
if not cp.exists():
print(f"Warn: MDR LaTeX config not found {self._model_path}")
try:
args = Munch({"config": str(cp), "checkpoint": str(wp), "device": self._device, "no_cuda": self._device == "cpu", "no_resize": False, "temperature": 0.0})
self._model = LatexOCR(args)
print(f"MDR LaTeX loaded on {self._device}.")
except Exception as e:
print(f"ERROR initializing MDR LatexOCR: {e}")
self._model = None
return self._model
def _download(self):
tag = "v0.0.1"
base = f"https://github.com/lukas-blecher/LaTeX-OCR/releases/download/{tag}/"
files = {"weights.pth": base + "weights.pth", "image_resizer.pth": base + "image_resizer.pth"}
mdr_ensure_directory(self._model_path)
[mdr_download_model(url, Path(self._model_path) / name) for name, url in files.items() if not (Path(self._model_path) / name).exists()]
# --- MDR Table Parser ---
MDRTableOutputFormat = Literal["latex", "markdown", "html"]
class MDRTableParser:
"""Parses table structure/content from images using StructTable model."""
def __init__(self, device: Literal["cpu", "cuda"], model_path: str):
self._model: Any | None = None; self._model_path = mdr_ensure_directory(model_path)
self._device = device if torch.cuda.is_available() and device=="cuda" else "cpu"
self._disabled = self._device == "cpu"
if self._disabled: print("Warning: MDR Table parsing requires CUDA. Disabled.")
def parse_table_image(self, image: Image, format: MDRTableLayoutParsedFormat) -> str | None:
if self._disabled: return None;
fmt: MDRTableOutputFormat | None = None
if format == MDRTableLayoutParsedFormat.LATEX: fmt="latex"
elif format == MDRTableLayoutParsedFormat.MARKDOWN: fmt="markdown"
elif format == MDRTableLayoutParsedFormat.HTML: fmt="html"
else: return None
image = mdr_expand_image(image, 0.05)
model = self._get_model()
if model is None: return None;
try:
img_rgb = image.convert('RGB') if image.mode!='RGB' else image
with torch.no_grad(): results = model([img_rgb], output_format=fmt)
return results[0] if results else None
except Exception as e: print(f"MDR Table parsing error: {e}"); return None
def _get_model(self):
if self._model is None and not self._disabled:
try:
from struct_eqtable import build_model # Dynamic import
name = "U4R/StructTable-InternVL2-1B"; local = any(Path(self._model_path).iterdir())
print(f"Loading MDR StructTable model '{name}'...")
model = build_model(model_ckpt=name, max_new_tokens=1024, max_time=30, lmdeploy=False, flash_attn=True, batch_size=1, cache_dir=self._model_path, local_files_only=local)
self._model = model.to(self._device); print(f"MDR StructTable loaded on {self._device}.")
except ImportError: print("ERROR: struct_eqtable not found."); self._disabled=True; self._model=None
except Exception as e: print(f"ERROR loading MDR StructTable: {e}"); self._model=None
return self._model
# --- MDR Image Optimizer ---
_MDR_TINY_ROTATION = 0.005
@dataclass
class _MDR_RotationContext: to_origin: MDRRotationAdjuster; to_new: MDRRotationAdjuster; fragment_origin_rectangles: list[MDRRectangle]
class MDRImageOptimizer:
"""Handles image rotation detection and coordinate adjustments."""
def __init__(self, raw_image: Image, adjust_points: bool):
self._raw = raw_image; self._image = raw_image; self._adjust_points = adjust_points
self._fragments: list[MDROcrFragment] = []; self._rotation: float = 0.0; self._rot_ctx: _MDR_RotationContext | None = None
@property
def image(self) -> Image: return self._image
@property
def adjusted_image(self) -> Image | None: return self._image if self._rot_ctx is not None else None
@property
def rotation(self) -> float: return self._rotation
@property
def image_np(self) -> np.ndarray: img_rgb = np.array(self._raw.convert("RGB")); return cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)
def receive_fragments(self, fragments: list[MDROcrFragment]):
self._fragments = fragments
if not fragments:
return
self._rotation = mdr_calculate_image_rotation(fragments)
if abs(self._rotation) < _MDR_TINY_ROTATION:
self._rotation = 0.0
return
orig_sz = self._raw.size
try:
self._image = self._raw.rotate(-np.degrees(self._rotation), resample=PILResampling.BICUBIC, fillcolor=(255, 255, 255), expand=True)
except Exception as e:
print(f"Optimizer rotation error: {e}")
self._rotation = 0.0
self._image = self._raw
return
new_sz = self._image.size
self._rot_ctx = _MDR_RotationContext(
fragment_origin_rectangles=[f.rect for f in fragments],
to_new=MDRRotationAdjuster(orig_sz, new_sz, self._rotation, False),
to_origin=MDRRotationAdjuster(orig_sz, new_sz, self._rotation, True))
adj = self._rot_ctx.to_new
[setattr(f, 'rect', MDRRectangle(lt=adj.adjust(r.lt), rt=adj.adjust(r.rt), lb=adj.adjust(r.lb), rb=adj.adjust(r.rb))) for f in fragments if (r := f.rect)]
def finalize_layout_coords(self, layouts: list[MDRLayoutElement]):
if self._rot_ctx is None or self._adjust_points: return
if len(self._fragments) == len(self._rot_ctx.fragment_origin_rectangles): [setattr(f, 'rect', orig_r) for f, orig_r in zip(self._fragments, self._rot_ctx.fragment_origin_rectangles)]
adj = self._rot_ctx.to_origin; [setattr(l, 'rect', MDRRectangle(lt=adj.adjust(r.lt), rt=adj.adjust(r.rt), lb=adj.adjust(r.lb), rb=adj.adjust(r.rb))) for l in layouts if (r:=l.rect)]
# --- MDR Image Clipping ---
def mdr_clip_from_image(image: Image, rect: MDRRectangle, wrap_w: float = 0.0, wrap_h: float = 0.0) -> Image:
"""Clips a potentially rotated rectangle from an image."""
try:
h_rot, _ = mdr_calculate_rectangle_rotation(rect)
avg_w, avg_h = rect.size
if avg_w <= 0 or avg_h <= 0:
return new_image("RGB", (1, 1), (255, 255, 255))
tx, ty = rect.lt
trans_orig = np.array([[1, 0, -tx], [0, 1, -ty], [0, 0, 1]])
cos_r = cos(-h_rot)
sin_r = sin(-h_rot)
rot = np.array([[cos_r, -sin_r, 0], [sin_r, cos_r, 0], [0, 0, 1]])
pad_dx = wrap_w / 2.0
pad_dy = wrap_h / 2.0
trans_pad = np.array([[1, 0, pad_dx], [0, 1, pad_dy], [0, 0, 1]])
matrix = trans_pad @ rot @ trans_orig
try:
inv_matrix = np.linalg.inv(matrix)
except np.linalg.LinAlgError:
x0, y0, x1, y1 = rect.wrapper
return image.crop((round(x0), round(y0), round(x1), round(y1)))
p_mat = (inv_matrix[0, 0], inv_matrix[0, 1], inv_matrix[0, 2], inv_matrix[1, 0], inv_matrix[1, 1], inv_matrix[1, 2])
out_w = ceil(avg_w + wrap_w)
out_h = ceil(avg_h + wrap_h)
return image.transform((out_w, out_h), PILTransform.AFFINE, p_mat, PILResampling.BICUBIC, fillcolor=(255, 255, 255))
except Exception as e:
print(f"MDR Clipping error: {e}")
return new_image("RGB", (10, 10), (255, 255, 255))
def mdr_clip_layout(res: MDRExtractionResult, layout: MDRLayoutElement, wrap_w: float = 0.0, wrap_h: float = 0.0) -> Image:
"""Clips a layout region from the MDRExtractionResult image."""
img = res.adjusted_image if res.adjusted_image else res.extracted_image
return mdr_clip_from_image(img, layout.rect, wrap_w, wrap_h)
# --- MDR Debug Plotting ---
_MDR_FRAG_COLOR = (0x49, 0xCF, 0xCB, 200); _MDR_LAYOUT_COLORS = { MDRLayoutClass.TITLE: (0x0A,0x12,0x2C,255), MDRLayoutClass.PLAIN_TEXT: (0x3C,0x67,0x90,255), MDRLayoutClass.ABANDON: (0xC0,0xBB,0xA9,180), MDRLayoutClass.FIGURE: (0x5B,0x91,0x3C,255), MDRLayoutClass.FIGURE_CAPTION: (0x77,0xB3,0x54,255), MDRLayoutClass.TABLE: (0x44,0x17,0x52,255), MDRLayoutClass.TABLE_CAPTION: (0x81,0x75,0xA0,255), MDRLayoutClass.TABLE_FOOTNOTE: (0xEF,0xB6,0xC9,255), MDRLayoutClass.ISOLATE_FORMULA: (0xFA,0x38,0x27,255), MDRLayoutClass.FORMULA_CAPTION: (0xFF,0x9D,0x24,255) }; _MDR_DEFAULT_COLOR = (0x80,0x80,0x80,255); _MDR_RGBA = tuple[int,int,int,int]
def mdr_plot_layout(image: Image, layouts: Iterable[MDRLayoutElement]) -> None:
"""Draws layout and fragment boxes onto an image for debugging."""
if not layouts: return;
try:
l_font = load_default(size=25)
f_font = load_default(size=15) # Not used currently, but kept for potential future use
draw = ImageDraw.Draw(image, mode="RGBA")
except Exception as e:
print(f"MDR Plot init error: {e}")
return
def _draw_num(pos: MDRPoint, num: int, font: FreeTypeFont, color: _MDR_RGBA):
try:
x, y = pos
txt = str(num)
txt_pos = (round(x) + 3, round(y) + 1)
bbox = draw.textbbox(txt_pos, txt, font=font)
bg_rect = (bbox[0] - 2, bbox[1] - 1, bbox[2] + 2, bbox[3] + 1)
bg_color = (color[0], color[1], color[2], 180)
draw.rectangle(bg_rect, fill=bg_color)
draw.text(txt_pos, txt, font=font, fill=(255, 255, 255, 255))
except Exception as e:
print(f"MDR Draw num error: {e}")
for i, l in enumerate(layouts):
try:
l_color = _MDR_LAYOUT_COLORS.get(l.cls, _MDR_DEFAULT_COLOR)
draw.polygon([p for p in l.rect], outline=l_color, width=3)
_draw_num(l.rect.lt, i + 1, l_font, l_color)
except Exception as e:
print(f"MDR Layout draw error: {e}")
for l in layouts:
for f in l.fragments:
try:
draw.polygon([p for p in f.rect], outline=_MDR_FRAG_COLOR, width=1)
except Exception as e:
print(f"MDR Fragment draw error: {e}")
# --- MDR Extraction Engine ---
class MDRExtractionEngine:
"""Core engine for extracting structured information from a document image."""
def __init__(self, model_dir_path: str, device: Literal["cpu", "cuda"]="cpu", ocr_for_each_layouts: bool=True, extract_formula: bool=True, extract_table_format: MDRTableLayoutParsedFormat|None=None):
self._model_dir = model_dir_path # Base directory for all models
self._device = device if torch.cuda.is_available() else "cpu"
self._ocr_each = ocr_for_each_layouts; self._ext_formula = extract_formula; self._ext_table = extract_table_format
self._yolo: YOLOv10 | None = None
# Initialize sub-modules, passing the main model_dir_path
self._ocr_engine = MDROcrEngine(device=self._device, model_dir_path=os.path.join(self._model_dir, "onnx_ocr"))
self._table_parser = MDRTableParser(device=self._device, model_path=os.path.join(self._model_dir, "struct_eqtable"))
self._latex_extractor = MDRLatexExtractor(model_path=os.path.join(self._model_dir, "latex"))
self._layout_reader = MDRLayoutReader(model_path=os.path.join(self._model_dir, "layoutreader"))
print(f"MDR Extraction Engine initialized on device: {self._device}")
# --- MODIFIED _get_yolo_model METHOD for HF ---
def _get_yolo_model(self) -> YOLOv10 | None:
"""Loads the YOLOv10 layout detection model using hf_hub_download."""
if self._yolo is None and YOLOv10 is not None:
repo_id = "juliozhao/DocLayout-YOLO-DocStructBench"
filename = "doclayout_yolo_docstructbench_imgsz1024.pt"
# Use a subdirectory within the main model dir for YOLO cache via HF Hub
yolo_cache_dir = Path(self._model_dir) / "yolo_hf_cache"
mdr_ensure_directory(str(yolo_cache_dir)) # Ensure cache dir exists
print(f"Attempting to load YOLO model '{filename}' from repo '{repo_id}'...")
print(f"Hugging Face Hub cache directory for YOLO: {yolo_cache_dir}")
try:
# Download the model file using huggingface_hub, caching it
yolo_model_filepath = hf_hub_download(
repo_id=repo_id,
filename=filename,
cache_dir=yolo_cache_dir, # Cache within our designated structure
local_files_only=False, # Allow download
force_download=False, # Use cache if available
)
print(f"YOLO model file path: {yolo_model_filepath}")
# Load the model using the downloaded file path
self._yolo = YOLOv10(yolo_model_filepath)
print("MDR YOLOv10 model loaded successfully.")
# --- MODIFIED EXCEPTION HANDLING ---
except HfHubHTTPError as e: # <-- CHANGED THIS LINE
print(f"ERROR: Failed to download/access YOLO model via Hugging Face Hub: {e}") # Slightly updated message
self._yolo = None
except FileNotFoundError as e: # Catch if hf_hub_download fails finding file OR YOLOv10 constructor fails
print(f"ERROR: YOLO model file not found or failed to load locally: {e}") # Slightly updated message
self._yolo = None
except Exception as e:
# Keep the general exception catch, but make the message more specific
print(f"ERROR: An unexpected issue occurred loading YOLOv10 model from {yolo_cache_dir}/{filename}: {e}")
self._yolo = None
elif YOLOv10 is None:
print("MDR YOLOv10 class not available. Layout detection skipped.")
return self._yolo
def analyze_image(self, image: Image, adjust_points: bool=False) -> MDRExtractionResult:
"""Analyzes a single page image to extract layout and content."""
print(" Engine: Analyzing image...")
optimizer = MDRImageOptimizer(image, adjust_points)
print(" Engine: Initial OCR...")
frags = list(self._ocr_engine.find_text_fragments(optimizer.image_np))
print(f" Engine: {len(frags)} fragments found.")
optimizer.receive_fragments(frags)
frags = optimizer._fragments # Use adjusted fragments
print(" Engine: Layout detection...")
yolo = self._get_yolo_model()
raw_layouts = []
if yolo:
try:
raw_layouts = list(self._run_yolo_detection(optimizer.image, yolo))
print(f" Engine: {len(raw_layouts)} raw layouts found.")
except Exception as e:
print(f" Engine: YOLO error: {e}")
print(" Engine: Matching fragments...")
layouts = self._match_fragments_to_layouts(frags, raw_layouts)
print(" Engine: Removing overlaps...")
layouts = mdr_remove_overlap_layouts(layouts)
print(f" Engine: {len(layouts)} layouts after overlap removal.")
if self._ocr_each and layouts:
print(" Engine: OCR correction...")
self._run_ocr_correction(optimizer.image, layouts)
print(" Engine: Determining reading order...")
layouts = self._layout_reader.determine_reading_order(layouts, optimizer.image.size)
layouts = [l for l in layouts if self._should_keep_layout(l)]
print(f" Engine: {len(layouts)} layouts after filtering.")
if self._ext_table or self._ext_formula:
print(" Engine: Parsing tables/formulas...")
self._parse_special_layouts(layouts, optimizer)
print(" Engine: Merging fragments...")
[setattr(l, 'fragments', mdr_merge_fragments_into_lines(l.fragments)) for l in layouts]
print(" Engine: Finalizing coords...")
optimizer.finalize_layout_coords(layouts)
print(" Engine: Analysis complete.")
return MDRExtractionResult(rotation=optimizer.rotation, layouts=layouts, extracted_image=image, adjusted_image=optimizer.adjusted_image)
def _run_yolo_detection(self, img: Image, yolo: YOLOv10) -> Generator[MDRLayoutElement, None, None]:
img_rgb = img.convert("RGB")
res = yolo.predict(source=img_rgb, imgsz=1024, conf=0.2, device=self._device, verbose=False)
if not res or not hasattr(res[0], 'boxes') or res[0].boxes is None:
return
boxes = res[0].boxes
for cls_id_t, xyxy_t in zip(boxes.cls, boxes.xyxy):
cls_id = int(cls_id_t.item())
try:
cls = MDRLayoutClass(cls_id)
except ValueError:
continue
x1, y1, x2, y2 = [c.item() for c in xyxy_t]
rect = MDRRectangle(lt=(x1, y1), rt=(x2, y1), lb=(x1, y2), rb=(x2, y2))
if rect.is_valid and rect.area > 10:
if cls == MDRLayoutClass.TABLE:
yield MDRTableLayoutElement(cls=cls, rect=rect, fragments=[], parsed=None)
elif cls == MDRLayoutClass.ISOLATE_FORMULA:
yield MDRFormulaLayoutElement(cls=cls, rect=rect, fragments=[], latex=None)
elif cls in MDRPlainLayoutElement.__annotations__['cls'].__args__:
yield MDRPlainLayoutElement(cls=cls, rect=rect, fragments=[])
def _match_fragments_to_layouts(self, frags: list[MDROcrFragment], layouts: list[MDRLayoutElement]) -> list[MDRLayoutElement]:
if not frags or not layouts:
return layouts
layout_polys = [(Polygon(l.rect) if l.rect.is_valid else None) for l in layouts]
for frag in frags:
try:
frag_poly = Polygon(frag.rect)
frag_area = frag_poly.area
except:
continue
if not frag_poly.is_valid or frag_area < 1e-6:
continue
candidates = [] # (layout_idx, layout_area, overlap_ratio)
for idx, l_poly in enumerate(layout_polys):
if l_poly is None:
continue
try:
inter_area = frag_poly.intersection(l_poly).area
except:
continue
overlap = inter_area / frag_area if frag_area > 0 else 0
if overlap > 0.85:
candidates.append((idx, l_poly.area, overlap))
if candidates:
candidates.sort(key=lambda x: (x[1], -x[2]))
best_idx = candidates[0][0]
layouts[best_idx].fragments.append(frag)
for l in layouts:
l.fragments.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0]))
return layouts
def _run_ocr_correction(self, img: Image, layouts: list[MDRLayoutElement]):
for i, l in enumerate(layouts):
if l.cls == MDRLayoutClass.FIGURE: continue
try: mdr_correct_layout_fragments(self._ocr_engine, img, l)
except Exception as e: print(f" Engine: OCR correction error layout {i}: {e}")
def _parse_special_layouts(self, layouts: list[MDRLayoutElement], optimizer: MDRImageOptimizer):
img_to_clip = optimizer.image
for l in layouts:
if isinstance(l, MDRFormulaLayoutElement) and self._ext_formula:
try:
f_img = mdr_clip_from_image(img_to_clip, l.rect)
l.latex = self._latex_extractor.extract(f_img) if f_img.width > 1 and f_img.height > 1 else None
except Exception as e:
print(f" Engine: LaTeX extract error: {e}")
elif isinstance(l, MDRTableLayoutElement) and self._ext_table is not None:
try:
t_img = mdr_clip_from_image(img_to_clip, l.rect)
parsed = self._table_parser.parse_table_image(t_img, self._ext_table) if t_img.width > 1 and t_img.height > 1 else None
except Exception as e:
print(f" Engine: Table parse error: {e}")
parsed = None
if parsed:
l.parsed = (parsed, self._ext_table)
def _should_keep_layout(self, l: MDRLayoutElement) -> bool:
if l.fragments and not all(mdr_is_whitespace(f.text) for f in l.fragments): return True
return l.cls in [MDRLayoutClass.FIGURE, MDRLayoutClass.TABLE, MDRLayoutClass.ISOLATE_FORMULA]
# --- MDR Page Section Linking ---
class _MDR_LinkedShape:
"""Internal helper for managing layout linking across pages."""
def __init__(self, layout: MDRLayoutElement): self.layout=layout; self.pre:list[MDRLayoutElement|None]=[None,None]; self.nex:list[MDRLayoutElement|None]=[None,None]
@property
def distance2(self) -> float: x,y=self.layout.rect.lt; return x*x+y*y
class MDRPageSection:
"""Represents a page's layouts for framework detection via linking."""
def __init__(self, page_index: int, layouts: Iterable[MDRLayoutElement]):
self._page_index = page_index; self._shapes = [_MDR_LinkedShape(l) for l in layouts]; self._shapes.sort(key=lambda s: (s.layout.rect.lt[1], s.layout.rect.lt[0]))
@property
def page_index(self) -> int: return self._page_index
def find_framework_elements(self) -> list[MDRLayoutElement]:
"""Identifies framework layouts based on links to other pages."""
return [s.layout for s in self._shapes if any(s.pre) or any(s.nex)]
def link_to_next(self, next_section: 'MDRPageSection', offset: int) -> None:
"""Links matching shapes between this section and the next."""
if offset not in (1, 2):
return
matches_matrix = [[sn for sn in next_section._shapes if self._shapes_match(ss, sn)] for ss in self._shapes]
origin_pair = self._find_origin_pair(matches_matrix, next_section._shapes)
if origin_pair is None:
return
orig_s, orig_n = origin_pair
orig_s_pt = orig_s.layout.rect.lt
orig_n_pt = orig_n.layout.rect.lt
for i, s1 in enumerate(self._shapes):
potentials = matches_matrix[i]
if not potentials:
continue
r1_rel = self._relative_rect(orig_s_pt, s1.layout.rect)
best_s2 = None
max_ovr = -1.0
for s2 in potentials:
r2_rel = self._relative_rect(orig_n_pt, s2.layout.rect)
ovr = self._symmetric_iou(r1_rel, r2_rel)
if ovr > max_ovr:
max_ovr = ovr
best_s2 = s2
if max_ovr >= 0.80 and best_s2 is not None:
s1.nex[offset - 1] = best_s2.layout
best_s2.pre[offset - 1] = s1.layout # Link both ways
def _shapes_match(self, s1: _MDR_LinkedShape, s2: _MDR_LinkedShape) -> bool:
l1 = s1.layout
l2 = s2.layout
sz1 = l1.rect.size
sz2 = l2.rect.size
thresh = 0.90
if mdr_similarity_ratio(sz1[0], sz2[0]) < thresh or mdr_similarity_ratio(sz1[1], sz2[1]) < thresh:
return False
f1 = l1.fragments
f2 = l2.fragments
c1 = len(f1)
c2 = len(f2)
if c1 == 0 and c2 == 0:
return True
if c1 == 0 or c2 == 0:
return False
matches = 0
used_f2 = [False] * c2
for frag1 in f1:
best_j = -1
max_sim = -1.0
for j, frag2 in enumerate(f2):
if not used_f2[j]:
sim = self._fragment_sim(l1, l2, frag1, frag2)
if sim > max_sim:
max_sim = sim
best_j = j
if max_sim > 0.75:
matches += 1
if best_j != -1:
used_f2[best_j] = True
max_c = max(c1, c2)
rate_frags = matches / max_c
return self._check_match_threshold(rate_frags, max_c, (0.0, 0.45, 0.45, 0.6, 0.8, 0.95))
def _fragment_sim(self, l1: MDRLayoutElement, l2: MDRLayoutElement, f1: MDROcrFragment, f2: MDROcrFragment) -> float:
r1_rel = self._relative_rect(l1.rect.lt, f1.rect)
r2_rel = self._relative_rect(l2.rect.lt, f2.rect)
geom_sim = self._symmetric_iou(r1_rel, r2_rel)
text_sim, _ = mdr_check_text_similarity(f1.text, f2.text)
return (geom_sim + text_sim) / 2.0
def _find_origin_pair(self, matches_matrix: list[list[_MDR_LinkedShape]], next_shapes: list[_MDR_LinkedShape]) -> tuple[_MDR_LinkedShape, _MDR_LinkedShape] | None:
best_pair = None
min_dist2 = float('inf')
for i, s1 in enumerate(self._shapes):
match_list = matches_matrix[i]
if not match_list:
continue
for s2 in match_list:
dist2 = s1.distance2 + s2.distance2
if dist2 < min_dist2:
min_dist2 = dist2
best_pair = (s1, s2)
return best_pair
def _check_match_threshold(self, rate: float, count: int, thresholds: Sequence[float]) -> bool:
if not thresholds: return False; idx = min(count, len(thresholds)-1); return rate >= thresholds[idx]
def _relative_rect(self, origin: MDRPoint, rect: MDRRectangle) -> MDRRectangle:
ox, oy = origin
r = rect
return MDRRectangle(lt=(r.lt[0] - ox, r.lt[1] - oy), rt=(r.rt[0] - ox, r.rt[1] - oy), lb=(r.lb[0] - ox, r.lb[1] - oy), rb=(r.rb[0] - ox, r.rb[1] - oy))
def _symmetric_iou(self, r1: MDRRectangle, r2: MDRRectangle) -> float:
try:
p1 = Polygon(r1)
p2 = Polygon(r2)
except:
return 0.0
if not p1.is_valid or not p2.is_valid:
return 0.0
try:
inter = p1.intersection(p2)
union = p1.union(p2)
except:
return 0.0
if inter.is_empty or inter.area < 1e-6:
return 0.0
union_area = union.area
return inter.area / union_area if union_area > 1e-6 else 1.0
# --- MDR Document Iterator ---
_MDR_CONTEXT_PAGES = 2 # Look behind/ahead pages for context
@dataclass
class MDRProcessingParams:
"""Parameters for processing a document."""
pdf: str | FitzDocument; page_indexes: Iterable[int] | None; report_progress: MDRProgressReportCallback | None
class MDRDocumentIterator:
"""Iterates through document pages, handles context, and calls the extraction engine."""
def __init__(self, device: Literal["cpu", "cuda"], model_dir_path: str, ocr_level: MDROcrLevel, extract_formula: bool, extract_table_format: MDRTableLayoutParsedFormat | None, debug_dir_path: str | None):
self._debug_dir = debug_dir_path
self._engine = MDRExtractionEngine(device=device, model_dir_path=model_dir_path, ocr_for_each_layouts=(ocr_level==MDROcrLevel.OncePerLayout), extract_formula=extract_formula, extract_table_format=extract_table_format)
def iterate_sections(self, params: MDRProcessingParams) -> Generator[tuple[int, MDRExtractionResult, list[MDRLayoutElement]], None, None]:
"""Yields page index, extraction result, and content layouts for each requested page."""
for res, sec in self._process_and_link_sections(params):
framework = set(sec.find_framework_elements()); content = [l for l in res.layouts if l not in framework]; yield sec.page_index, res, content
def _process_and_link_sections(self, params: MDRProcessingParams) -> Generator[tuple[MDRExtractionResult, MDRPageSection], None, None]:
queue: list[tuple[MDRExtractionResult, MDRPageSection]] = []
for page_idx, res in self._run_extraction_on_pages(params):
cur_sec = MDRPageSection(page_idx, res.layouts)
for i, (_, prev_sec) in enumerate(queue):
offset = len(queue) - i
if offset <= _MDR_CONTEXT_PAGES:
prev_sec.link_to_next(cur_sec, offset)
queue.append((res, cur_sec))
if len(queue) > _MDR_CONTEXT_PAGES:
yield queue.pop(0)
for res, sec in queue:
yield res, sec
def _run_extraction_on_pages(self, params: MDRProcessingParams) -> Generator[tuple[int, MDRExtractionResult], None, None]:
if self._debug_dir: mdr_ensure_directory(self._debug_dir)
doc, should_close = None, False
if isinstance(params.pdf, str):
try: doc = fitz.open(params.pdf); should_close = True
except Exception as e: print(f"ERROR: PDF open failed: {e}"); return
elif isinstance(params.pdf, FitzDocument): doc = params.pdf
else: print(f"ERROR: Invalid PDF type: {type(params.pdf)}"); return
scan_idxs, enable_idxs = self._get_page_ranges(doc, params.page_indexes)
enable_set = set(enable_idxs); total_scan = len(scan_idxs)
try:
for i, page_idx in enumerate(scan_idxs):
print(f" Iterator: Processing page {page_idx+1}/{doc.page_count} (Scan {i+1}/{total_scan})...")
try:
page = doc.load_page(page_idx)
img = self._render_page_image(page, 300)
res = self._engine.analyze_image(image=img, adjust_points=False) # Engine analyzes image
if self._debug_dir:
self._save_debug_plot(img, page_idx, res, self._debug_dir)
if page_idx in enable_set:
yield page_idx, res # Yield result for requested pages
if params.report_progress:
params.report_progress(i + 1, total_scan)
except Exception as e:
print(f" Iterator: Page {page_idx + 1} processing error: {e}")
finally:
if should_close and doc: doc.close()
def _get_page_ranges(self, doc: FitzDocument, idxs: Iterable[int]|None) -> tuple[Sequence[int], Sequence[int]]:
count = doc.page_count
if idxs is None:
all_p = list(range(count))
return all_p, all_p
enable = set()
scan = set()
for i in idxs:
if 0 <= i < count:
enable.add(i)
[scan.add(j) for j in range(max(0, i - _MDR_CONTEXT_PAGES), min(count, i + _MDR_CONTEXT_PAGES + 1))]
return sorted(list(scan)), sorted(list(enable))
def _render_page_image(self, page: FitzPage, dpi: int) -> Image:
mat = FitzMatrix(dpi / 72.0, dpi / 72.0)
pix = page.get_pixmap(matrix=mat, alpha=False)
return frombytes("RGB", (pix.width, pix.height), pix.samples)
def _save_debug_plot(self, img: Image, idx: int, res: MDRExtractionResult, path: str):
try:
plot_img = res.adjusted_image.copy() if res.adjusted_image else img.copy()
mdr_plot_layout(plot_img, res.layouts)
plot_img.save(os.path.join(path, f"mdr_plot_page_{idx + 1}.png"))
except Exception as e:
print(f" Iterator: Plot generation error page {idx + 1}: {e}")
# --- MagicDataReadiness Main Processor ---
class MagicPDFProcessor:
"""
Main class for processing PDF documents to extract structured data blocks
using the MagicDataReadiness pipeline.
"""
def __init__(self, device: Literal["cpu", "cuda"]="cuda", model_dir_path: str="./mdr_models", ocr_level: MDROcrLevel=MDROcrLevel.Once, extract_formula: bool=True, extract_table_format: MDRExtractedTableFormat|None=None, debug_dir_path: str|None=None):
"""
Initializes the MagicPDFProcessor.
Args:
device: Computation device ('cpu' or 'cuda'). Defaults to 'cuda'. Fallbacks to 'cpu' if CUDA not available.
model_dir_path: Path to directory for storing/caching downloaded models. Defaults to './mdr_models'.
ocr_level: Level of OCR application (Once per page or Once per layout). Defaults to Once per page.
extract_formula: Whether to attempt LaTeX extraction from formula images. Defaults to True.
extract_table_format: Desired format for extracted table content (LATEX, MARKDOWN, HTML, DISABLE, or None).
Defaults to LATEX if CUDA is available, otherwise DISABLE.
debug_dir_path: Optional path to save debug plots and intermediate files. Defaults to None (disabled).
"""
actual_dev = device if torch.cuda.is_available() else "cpu"; print(f"MagicPDFProcessor using device: {actual_dev}.")
if extract_table_format is None: extract_table_format = MDRExtractedTableFormat.LATEX if actual_dev=="cuda" else MDRExtractedTableFormat.DISABLE
table_fmt_internal: MDRTableLayoutParsedFormat|None = None
if extract_table_format==MDRExtractedTableFormat.LATEX: table_fmt_internal=MDRTableLayoutParsedFormat.LATEX
elif extract_table_format==MDRExtractedTableFormat.MARKDOWN: table_fmt_internal=MDRTableLayoutParsedFormat.MARKDOWN
elif extract_table_format==MDRExtractedTableFormat.HTML: table_fmt_internal=MDRTableLayoutParsedFormat.HTML
self._iterator = MDRDocumentIterator(device=actual_dev, model_dir_path=model_dir_path, ocr_level=ocr_level, extract_formula=extract_formula, extract_table_format=table_fmt_internal, debug_dir_path=debug_dir_path)
print("MagicPDFProcessor initialized.")
def process_document(self, pdf_input: str|FitzDocument, report_progress: MDRProgressReportCallback|None=None) -> Generator[MDRStructuredBlock, None, None]:
"""
Processes the entire PDF document and yields all extracted structured blocks.
Args:
pdf_input: Path to the PDF file or a loaded fitz.Document object.
report_progress: Optional callback function for progress updates (receives completed_scan_pages, total_scan_pages).
Yields:
MDRStructuredBlock: An extracted block (MDRTextBlock, MDRTableBlock, etc.).
"""
print(f"Processing document: {pdf_input if isinstance(pdf_input, str) else 'FitzDocument object'}")
for _, blocks, _ in self.process_document_pages(pdf_input=pdf_input, report_progress=report_progress, page_indexes=None):
yield from blocks
print("Document processing complete.")
def process_document_pages(self, pdf_input: str|FitzDocument, page_indexes: Iterable[int]|None=None, report_progress: MDRProgressReportCallback|None=None) -> Generator[tuple[int, list[MDRStructuredBlock], Image], None, None]:
"""
Processes specific pages (or all if page_indexes is None) of the PDF document.
Yields results page by page, including the page index, extracted blocks, and the original page image.
Args:
pdf_input: Path to the PDF file or a loaded fitz.Document object.
page_indexes: An iterable of 0-based page indices to process. If None, processes all pages.
report_progress: Optional callback function for progress updates.
Yields:
tuple[int, list[MDRStructuredBlock], Image]:
- page_index (0-based)
- list of extracted MDRStructuredBlock objects for that page
- PIL Image object of the original rendered page
"""
params = MDRProcessingParams(pdf=pdf_input, page_indexes=page_indexes, report_progress=report_progress)
page_count = 0
for page_idx, extraction_result, content_layouts in self._iterator.iterate_sections(params):
page_count += 1
print(f"Processor: Converting layouts to blocks for page {page_idx+1}...")
blocks = self._create_structured_blocks(extraction_result, content_layouts)
print(f"Processor: Analyzing paragraph structure for page {page_idx+1}...")
self._analyze_paragraph_structure(blocks)
print(f"Processor: Yielding results for page {page_idx+1}.")
yield page_idx, blocks, extraction_result.extracted_image # Yield original image
print(f"Processor: Finished processing {page_count} pages.")
def _create_structured_blocks(self, result: MDRExtractionResult, layouts: list[MDRLayoutElement]) -> list[MDRStructuredBlock]:
"""Converts MDRLayoutElement objects into MDRStructuredBlock objects."""
temp_store: list[tuple[MDRLayoutElement, MDRStructuredBlock]] = []
for layout in layouts:
if isinstance(layout, MDRPlainLayoutElement): self._add_plain_block(temp_store, layout, result)
elif isinstance(layout, MDRTableLayoutElement): temp_store.append((layout, self._create_table_block(layout, result)))
elif isinstance(layout, MDRFormulaLayoutElement): temp_store.append((layout, self._create_formula_block(layout, result)))
self._assign_relative_font_sizes(temp_store)
return [block for _, block in temp_store]
def _analyze_paragraph_structure(self, blocks: list[MDRStructuredBlock]):
"""
Calculates indentation and line-end heuristics for MDRTextBlocks
based on page-level text boundaries and average line height.
"""
# Define constants for clarity and maintainability
MIN_VALID_HEIGHT = 1e-6
# Heuristic: Indent if first line starts more than 1.0 * avg line height from page text start
INDENTATION_THRESHOLD_FACTOR = 1.0
# Heuristic: Last line touches end if it ends less than 1.0 * avg line height from page text end
LINE_END_THRESHOLD_FACTOR = 1.0
# Calculate average line height and text boundaries for the relevant text blocks on the page
page_avg_line_height, page_min_x, page_max_x = self._calculate_text_range(
(b for b in blocks if isinstance(b, MDRTextBlock) and b.kind != MDRTextKind.ABANDON)
)
# Avoid calculations if page metrics are invalid (e.g., no text, zero height)
if page_avg_line_height <= MIN_VALID_HEIGHT:
return
# Iterate through each block to determine its paragraph properties
for block in blocks:
# Process only valid text blocks with actual text content
if not isinstance(block, MDRTextBlock) or block.kind == MDRTextKind.ABANDON or not block.texts:
continue
# Use calculated page-level metrics for consistency in thresholds
avg_line_height = page_avg_line_height
page_text_start_x = page_min_x
page_text_end_x = page_max_x
# Get the first and last text spans (assumed to be lines after merging) within the block
first_text_span = block.texts[0]
last_text_span = block.texts[-1]
try:
# --- Calculate Indentation ---
# Estimate the starting x-coordinate of the first line (average of left top/bottom)
first_line_start_x = (first_text_span.rect.lt[0] + first_text_span.rect.lb[0]) / 2.0
# Calculate the difference between the first line's start and the page's text start boundary
indentation_delta = first_line_start_x - page_text_start_x
# Determine indentation based on the heuristic threshold relative to average line height
block.has_paragraph_indentation = indentation_delta > (avg_line_height * INDENTATION_THRESHOLD_FACTOR)
# --- Calculate Last Line End ---
# Estimate the ending x-coordinate of the last line (average of right top/bottom)
last_line_end_x = (last_text_span.rect.rt[0] + last_text_span.rect.rb[0]) / 2.0
# Calculate the difference between the page's text end boundary and the last line's end
line_end_delta = page_text_end_x - last_line_end_x
# Determine if the last line reaches near the end based on the heuristic threshold
block.last_line_touch_end = line_end_delta < (avg_line_height * LINE_END_THRESHOLD_FACTOR)
except Exception as e:
# Handle potential errors during calculation (e.g., invalid rect data)
print(f"Warn: Error calculating paragraph structure for block: {e}")
# Default to False if calculation fails to ensure attributes are set
block.has_paragraph_indentation = False
block.last_line_touch_end = False
def _calculate_text_range(self, blocks_iter: Iterable[MDRStructuredBlock]) -> tuple[float, float, float]:
"""Calculates average line height and min/max x-coordinates for text."""
h_sum = 0.0
count = 0
x1 = float('inf')
x2 = float('-inf')
for b in blocks_iter:
if not isinstance(b, MDRTextBlock) or b.kind == MDRTextKind.ABANDON:
continue
for t in b.texts:
_, h = t.rect.size
if h > 1e-6: # Use small threshold for valid height
h_sum += h
count += 1
tx1, _, tx2, _ = t.rect.wrapper
x1 = min(x1, tx1)
x2 = max(x2, tx2)
if count == 0:
return 0.0, 0.0, 0.0
mean_h = h_sum / count
x1 = 0.0 if x1 == float('inf') else x1
x2 = 0.0 if x2 == float('-inf') else x2
return mean_h, x1, x2
def _add_plain_block(self, store: list[tuple[MDRLayoutElement, MDRStructuredBlock]], layout: MDRPlainLayoutElement, result: MDRExtractionResult):
"""Creates MDRStructuredBlocks for plain layout types."""
cls = layout.cls
texts = self._convert_fragments_to_spans(layout.fragments)
if cls == MDRLayoutClass.TITLE:
store.append((layout, MDRTextBlock(layout.rect, texts, 0.0, MDRTextKind.TITLE)))
elif cls == MDRLayoutClass.PLAIN_TEXT:
store.append((layout, MDRTextBlock(layout.rect, texts, 0.0, MDRTextKind.PLAIN_TEXT)))
elif cls == MDRLayoutClass.ABANDON:
store.append((layout, MDRTextBlock(layout.rect, texts, 0.0, MDRTextKind.ABANDON)))
elif cls == MDRLayoutClass.FIGURE:
store.append((layout, MDRFigureBlock(layout.rect, [], 0.0, mdr_clip_layout(result, layout))))
elif cls == MDRLayoutClass.FIGURE_CAPTION:
block = self._find_previous_block(store, MDRFigureBlock)
if block: block.texts.extend(texts)
elif cls == MDRLayoutClass.TABLE_CAPTION or cls == MDRLayoutClass.TABLE_FOOTNOTE:
block = self._find_previous_block(store, MDRTableBlock)
if block: block.texts.extend(texts)
elif cls == MDRLayoutClass.FORMULA_CAPTION:
block = self._find_previous_block(store, MDRFormulaBlock)
if block: block.texts.extend(texts)
def _find_previous_block(self, store: list[tuple[MDRLayoutElement, MDRStructuredBlock]], block_type: type) -> MDRStructuredBlock | None:
"""Finds the most recent block of a specific type."""
for i in range(len(store) - 1, -1, -1):
_, block = store[i]
if isinstance(block, block_type):
return block
return None
def _create_table_block(self, layout: MDRTableLayoutElement, result: MDRExtractionResult) -> MDRTableBlock:
"""Converts MDRTableLayoutElement to MDRTableBlock."""
fmt = MDRTableFormat.UNRECOGNIZABLE
content = ""
if layout.parsed:
p_content, p_fmt = layout.parsed
can_use = not (p_fmt == MDRTableLayoutParsedFormat.LATEX and mdr_contains_cjka("".join(f.text for f in layout.fragments)))
if can_use:
content = p_content
if p_fmt == MDRTableLayoutParsedFormat.LATEX:
fmt = MDRTableFormat.LATEX
elif p_fmt == MDRTableLayoutParsedFormat.MARKDOWN:
fmt = MDRTableFormat.MARKDOWN
elif p_fmt == MDRTableLayoutParsedFormat.HTML:
fmt = MDRTableFormat.HTML
return MDRTableBlock(layout.rect, [], 0.0, fmt, content, mdr_clip_layout(result, layout))
def _create_formula_block(self, layout: MDRFormulaLayoutElement, result: MDRExtractionResult) -> MDRFormulaBlock:
"""Converts MDRFormulaLayoutElement to MDRFormulaBlock."""
content = layout.latex if layout.latex and not mdr_contains_cjka("".join(f.text for f in layout.fragments)) else None
return MDRFormulaBlock(layout.rect, [], 0.0, content, mdr_clip_layout(result, layout))
def _assign_relative_font_sizes(self, store: list[tuple[MDRLayoutElement, MDRStructuredBlock]]):
"""Calculates and assigns relative font size (0-1) to blocks."""
sizes = []
for l, _ in store:
heights = [f.rect.size[1] for f in l.fragments if f.rect.size[1] > 1e-6] # Use small threshold
avg_h = sum(heights) / len(heights) if heights else 0.0
sizes.append(avg_h)
valid = [s for s in sizes if s > 1e-6]
min_s, max_s = (min(valid), max(valid)) if valid else (0.0, 0.0)
rng = max_s - min_s
if rng < 1e-6:
[setattr(b, 'font_size', 0.0) for _, b in store]
else:
[setattr(b, 'font_size', (s - min_s) / rng if s > 1e-6 else 0.0) for s, (_, b) in zip(sizes, store)]
def _convert_fragments_to_spans(self, frags: list[MDROcrFragment]) -> list[MDRTextSpan]:
"""Converts MDROcrFragment list to MDRTextSpan list."""
return [MDRTextSpan(f.text, f.rank, f.rect) for f in frags]
# --- MagicDataReadiness Example Usage ---
if __name__ == '__main__':
print("="*60)
print(" MagicDataReadiness PDF Processor - Example Usage")
print("="*60)
# --- 1. Configuration (!!! MODIFY THESE PATHS WHEN OUTSIDE HF !!!) ---
# Directory where models are stored or will be downloaded
# IMPORTANT: Create this directory or ensure it's writable!
MDR_MODEL_DIRECTORY = "./mdr_pipeline_models"
# Path to the PDF file you want to process
# IMPORTANT: Place a PDF file here for testing!
# Create a dummy PDF if it doesn't exist for the example to run
MDR_INPUT_PDF = "example_input.pdf" # <--- CHANGE THIS
if not Path(MDR_INPUT_PDF).exists():
try:
print(f"Creating dummy PDF: {MDR_INPUT_PDF}")
doc = fitz.new_document()
page = doc.new_page()
page.insert_text((72, 72), "This is a dummy PDF for testing.")
doc.save(MDR_INPUT_PDF)
doc.close()
except Exception as e:
print(f"Warning: Could not create dummy PDF: {e}")
# Optional: Directory to save debug plots (set to None to disable)
MDR_DEBUG_DIRECTORY = "./mdr_debug_output"
# Specify device ('cuda' or 'cpu').
MDR_DEVICE = "cpu"
# Specify desired table format
MDR_TABLE_FORMAT = MDRExtractedTableFormat.MARKDOWN
# Specify pages (list of 0-based indices, or None for all)
MDR_PAGES = None # Example: [0, 1] for first two pages
# --- 2. Setup & Pre-checks ---
print(f"Model Directory: {os.path.abspath(MDR_MODEL_DIRECTORY)}")
print(f"Input PDF: {os.path.abspath(MDR_INPUT_PDF)}")
print(f"Debug Output: {os.path.abspath(MDR_DEBUG_DIRECTORY) if MDR_DEBUG_DIRECTORY else 'Disabled'}")
print(f"Target Device: {MDR_DEVICE}")
print(f"Table Format: {MDR_TABLE_FORMAT.name}")
print(f"Pages: {'All' if MDR_PAGES is None else MDR_PAGES}")
print("-" * 60)
mdr_ensure_directory(MDR_MODEL_DIRECTORY)
if MDR_DEBUG_DIRECTORY:
mdr_ensure_directory(MDR_DEBUG_DIRECTORY)
if not Path(MDR_INPUT_PDF).is_file():
print(f"ERROR: Input PDF not found at '{MDR_INPUT_PDF}'. Please place a PDF file there or update the path.")
exit(1)
# --- 3. Progress Callback ---
def mdr_progress_update(completed, total):
perc = (completed / total) * 100 if total > 0 else 0
print(f" [Progress] Scanned {completed}/{total} pages ({perc:.1f}%)")
# --- 4. Initialize Processor ---
print("Initializing MagicPDFProcessor...")
init_start = time.time()
try:
mdr_processor = MagicPDFProcessor(
device=MDR_DEVICE,
model_dir_path=MDR_MODEL_DIRECTORY,
debug_dir_path=MDR_DEBUG_DIRECTORY,
extract_table_format=MDR_TABLE_FORMAT
)
print(f"Initialization took {time.time() - init_start:.2f}s")
except Exception as e:
print(f"FATAL ERROR during initialization: {e}")
import traceback
traceback.print_exc()
exit(1)
# --- 5. Process Document ---
print("\nStarting document processing...")
proc_start = time.time()
all_blocks_count = 0
processed_pages_count = 0
try:
# Use the main processing method
block_generator = mdr_processor.process_document_pages(
pdf_input=MDR_INPUT_PDF,
page_indexes=MDR_PAGES,
report_progress=mdr_progress_update
)
# Iterate through pages and blocks
for page_idx, page_blocks, page_img in block_generator:
processed_pages_count += 1
print(f"\n--- Page {page_idx + 1} Results ---")
if not page_blocks:
print(" No blocks extracted.")
continue
print(f" Extracted {len(page_blocks)} blocks:")
for block_idx, block in enumerate(page_blocks):
all_blocks_count += 1
info = f" - Block {block_idx + 1}: {type(block).__name__}"
if isinstance(block, MDRTextBlock):
preview = block.texts[0].content[:70].replace('\n', ' ') + "..." if block.texts else "[EMPTY]"
info += f" (Kind: {block.kind.name}, FontSz: {block.font_size:.2f}, Indent: {block.has_paragraph_indentation}, EndTouch: {block.last_line_touch_end}) | Text: '{preview}'" # Added indent/endtouch
elif isinstance(block, MDRTableBlock):
info += f" (Format: {block.format.name}, HasContent: {bool(block.content)}, FontSz: {block.font_size:.2f})"
# if block.content: print(f" Content:\n{block.content}") # Uncomment to see content
elif isinstance(block, MDRFormulaBlock):
info += f" (HasLatex: {bool(block.content)}, FontSz: {block.font_size:.2f})"
# if block.content: print(f" LaTeX: {block.content}") # Uncomment to see content
elif isinstance(block, MDRFigureBlock):
info += f" (FontSz: {block.font_size:.2f})"
print(info)
proc_time = time.time() - proc_start
print("\n" + "="*60)
print(" Processing Summary")
print(f" Total time: {proc_time:.2f} seconds")
print(f" Pages processed: {processed_pages_count}")
print(f" Total blocks extracted: {all_blocks_count}")
print("="*60)
except Exception as e:
print(f"\nFATAL ERROR during processing: {e}")
import traceback
traceback.print_exc()
exit(1)