File size: 104,199 Bytes
d1dd214 16dcdfb d1dd214 16dcdfb d1dd214 16dcdfb d1dd214 a00ffbd d1dd214 a00ffbd 1e5ca7e d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 1e5ca7e d1dd214 a00ffbd d1dd214 1e5ca7e d1dd214 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 |
# -*- coding: utf-8 -*-
# /=====================================================================\ #
# | MagicDataReadiness - MAGIC PDF Parser | #
# |---------------------------------------------------------------------| #
# | Description: | #
# | Extracts structured content (text, tables, figures, formulas) | #
# | from PDF documents using layout analysis and OCR. | #
# | Combines logic from various internal components. | #
# |---------------------------------------------------------------------| #
# | Dependencies: | #
# | - Python 3.11+ | #
# | - External Libraries (See imports below and installation notes) | #
# | - Pre-trained CV Models (Downloaded automatically to model dir) | #
# |---------------------------------------------------------------------| #
# | Usage: | #
# | See the __main__ block at the end of the script for an example. | #
# \=====================================================================/ #
# --- External Library Imports ---
import os
import re
import io
import copy
import fitz # PyMuPDF
from fitz import Document as FitzDocument, Page as FitzPage, Matrix as FitzMatrix
import numpy as np
import cv2 # OpenCV
import torch # PyTorch
import requests # For downloading models
from pathlib import Path
from enum import auto, Enum
from dataclasses import dataclass
from typing import Literal, Iterable, Generator, Sequence, Callable, TypeAlias, List, Dict, Any
from collections import defaultdict
from math import pi, ceil, sin, cos, sqrt, atan2
from PIL.Image import Image, frombytes, new as new_image, Resampling as PILResampling, Transform as PILTransform
from PIL.ImageOps import expand as pil_expand
from PIL import ImageDraw
from PIL.ImageFont import load_default, FreeTypeFont
from shapely.geometry import Polygon
import pyclipper
from unicodedata import category
from alphabet_detector import AlphabetDetector
from munch import Munch
from transformers import LayoutLMv3ForTokenClassification
import onnxruntime
# --- HUGGING FACE HUB IMPORT ONLY BECAUSE RUNNING IN SPACES NOT NECESSARY IN PROD ---
from huggingface_hub import hf_hub_download, HfHubDownloadError
import time # Added for example usage timing
# --- External Dependencies ---
try:
from doclayout_yolo import YOLOv10
except ImportError:
print("Warning: Could not import YOLOv10 from doclayout_yolo. Layout detection will fail.")
YOLOv10 = None
try:
from pix2tex.cli import LatexOCR
except ImportError:
print("Warning: Could not import LatexOCR from pix2tex.cli. LaTeX extraction will fail.")
LatexOCR = None
try:
pass # from struct_eqtable import build_model # Keep commented as per original
except ImportError:
print("Warning: Could not import build_model from struct_eqtable. Table parsing might fail.")
# --- MagicDataReadiness Core Components ---
# --- MDR Utilities ---
def mdr_download_model(url: str, file_path: Path):
"""Downloads a model file from a URL to a local path."""
try:
response = requests.get(url, stream=True, timeout=120) # Increased timeout
response.raise_for_status()
file_path.parent.mkdir(parents=True, exist_ok=True)
with open(file_path, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"Successfully downloaded {file_path.name}")
except requests.exceptions.RequestException as e:
print(f"ERROR: Failed to download {url}: {e}")
if file_path.exists(): os.remove(file_path)
raise FileNotFoundError(f"Failed to download model from {url}") from e
except Exception as e:
print(f"ERROR: Failed writing file {file_path}: {e}")
if file_path.exists(): os.remove(file_path)
raise e
# --- MDR Utilities ---
def mdr_ensure_directory(path: str) -> str:
"""Ensures a directory exists, creating it if necessary."""
path = os.path.abspath(path)
os.makedirs(path, exist_ok=True)
return path
def mdr_is_whitespace(text: str) -> bool:
"""Checks if a string contains only whitespace."""
return bool(re.match(r"^\s*$", text)) if text else True
def mdr_expand_image(image: Image, percent: float) -> Image:
"""Expands an image with a white border."""
if percent <= 0: return image.copy()
w, h = image.size; bw, bh = ceil(w * percent), ceil(h * percent)
fill: tuple[int, ...] | int
if image.mode == "RGBA": fill = (255, 255, 255, 255)
elif image.mode in ("LA", "L"): fill = 255
else: fill = (255, 255, 255)
return pil_expand(image=image, border=(bw, bh), fill=fill)
# --- MDR Geometry (rectangle.py) ---
MDRPoint: TypeAlias = tuple[float, float]
@dataclass
class MDRRectangle:
"""Represents a geometric rectangle defined by four corner points."""
lt: MDRPoint; rt: MDRPoint; lb: MDRPoint; rb: MDRPoint
def __iter__(self) -> Generator[MDRPoint, None, None]: yield self.lt; yield self.lb; yield self.rb; yield self.rt
@property
def is_valid(self) -> bool:
try: return Polygon(self).is_valid
except: return False
@property
def segments(self) -> Generator[tuple[MDRPoint, MDRPoint], None, None]: yield (self.lt, self.lb); yield (self.lb, self.rb); yield (self.rb, self.rt); yield (self.rt, self.lt)
@property
def area(self) -> float:
try: return Polygon(self).area
except: return 0.0
@property
def size(self) -> tuple[float, float]:
widths, heights = [], [];
for i, (p1, p2) in enumerate(self.segments):
dx, dy = p1[0]-p2[0], p1[1]-p2[1]; dist = sqrt(dx*dx + dy*dy)
if i % 2 == 0: heights.append(dist)
else: widths.append(dist)
avg_w = sum(widths)/len(widths) if widths else 0.0; avg_h = sum(heights)/len(heights) if heights else 0.0
return avg_w, avg_h
@property
def wrapper(self) -> tuple[float, float, float, float]:
x1, y1, x2, y2 = float("inf"), float("inf"), float("-inf"), float("-inf")
for x, y in self: x1, y1, x2, y2 = min(x1, x), min(y1, y), max(x2, x), max(y2, y)
return x1, y1, x2, y2
def mdr_intersection_area(rect1: MDRRectangle, rect2: MDRRectangle) -> float:
"""Calculates intersection area between two MDRRectangles."""
try:
p1, p2 = Polygon(rect1), Polygon(rect2);
if not p1.is_valid or not p2.is_valid: return 0.0
return p1.intersection(p2).area
except: return 0.0
# --- MDR Data Structures ---
@dataclass
class MDROcrFragment:
"""Represents a fragment of text identified by OCR."""
order: int; text: str; rank: float; rect: MDRRectangle
class MDRLayoutClass(Enum):
"""Enumeration of different layout types identified."""
TITLE=0; PLAIN_TEXT=1; ABANDON=2; FIGURE=3; FIGURE_CAPTION=4; TABLE=5; TABLE_CAPTION=6; TABLE_FOOTNOTE=7; ISOLATE_FORMULA=8; FORMULA_CAPTION=9
class MDRTableLayoutParsedFormat(Enum):
"""Enumeration for formats of parsed table content."""
LATEX=auto(); MARKDOWN=auto(); HTML=auto()
@dataclass
class MDRBaseLayoutElement:
"""Base class for layout elements found on a page."""
rect: MDRRectangle; fragments: list[MDROcrFragment]
@dataclass
class MDRPlainLayoutElement(MDRBaseLayoutElement):
"""Layout element for plain text, titles, captions, figures, etc."""
cls: Literal[MDRLayoutClass.TITLE, MDRLayoutClass.PLAIN_TEXT, MDRLayoutClass.ABANDON, MDRLayoutClass.FIGURE, MDRLayoutClass.FIGURE_CAPTION, MDRLayoutClass.TABLE_CAPTION, MDRLayoutClass.TABLE_FOOTNOTE, MDRLayoutClass.FORMULA_CAPTION]
@dataclass
class MDRTableLayoutElement(MDRBaseLayoutElement):
"""Layout element specifically for tables."""
parsed: tuple[str, MDRTableLayoutParsedFormat] | None; cls: Literal[MDRLayoutClass.TABLE] = MDRLayoutClass.TABLE
@dataclass
class MDRFormulaLayoutElement(MDRBaseLayoutElement):
"""Layout element specifically for formulas."""
latex: str | None; cls: Literal[MDRLayoutClass.ISOLATE_FORMULA] = MDRLayoutClass.ISOLATE_FORMULA
MDRLayoutElement = MDRPlainLayoutElement | MDRTableLayoutElement | MDRFormulaLayoutElement # Type alias
@dataclass
class MDRExtractionResult:
"""Holds the complete result of extracting from a single page image."""
rotation: float; layouts: list[MDRLayoutElement]; extracted_image: Image; adjusted_image: Image | None
# --- MDR Data Structures ---
MDRProgressReportCallback: TypeAlias = Callable[[int, int], None]
class MDROcrLevel(Enum): Once=auto(); OncePerLayout=auto()
class MDRExtractedTableFormat(Enum): LATEX=auto(); MARKDOWN=auto(); HTML=auto(); DISABLE=auto()
class MDRTextKind(Enum): TITLE=0; PLAIN_TEXT=1; ABANDON=2
@dataclass
class MDRTextSpan:
"""Represents a span of text content within a block."""
content: str; rank: float; rect: MDRRectangle
@dataclass
class MDRBasicBlock:
"""Base class for structured blocks extracted from the document."""
rect: MDRRectangle; texts: list[MDRTextSpan]; font_size: float # Relative font size (0-1)
@dataclass
class MDRTextBlock(MDRBasicBlock):
"""A structured block containing text content."""
kind: MDRTextKind; has_paragraph_indentation: bool = False; last_line_touch_end: bool = False
class MDRTableFormat(Enum): LATEX=auto(); MARKDOWN=auto(); HTML=auto(); UNRECOGNIZABLE=auto()
@dataclass
class MDRTableBlock(MDRBasicBlock):
"""A structured block representing a table."""
content: str; format: MDRTableFormat; image: Image # Image clip of the table
@dataclass
class MDRFormulaBlock(MDRBasicBlock):
"""A structured block representing a formula."""
content: str | None; image: Image # Image clip of the formula
@dataclass
class MDRFigureBlock(MDRBasicBlock):
"""A structured block representing a figure/image."""
image: Image # Image clip of the figure
MDRAssetBlock = MDRTableBlock | MDRFormulaBlock | MDRFigureBlock # Type alias
MDRStructuredBlock = MDRTextBlock | MDRAssetBlock # Type alias
# --- MDR Utilities ---
def mdr_similarity_ratio(v1: float, v2: float) -> float:
"""Calculates the ratio of the smaller value to the larger value (0-1)."""
if v1==0 and v2==0: return 1.0;
if v1<0 or v2<0: return 0.0;
v1, v2 = (v2, v1) if v1 > v2 else (v1, v2);
return 1.0 if v2==0 else v1/v2
def mdr_intersection_bounds_size(r1: MDRRectangle, r2: MDRRectangle) -> tuple[float, float]:
"""Calculates width/height of the intersection bounding box."""
try:
p1, p2 = Polygon(r1), Polygon(r2);
if not p1.is_valid or not p2.is_valid: return 0.0, 0.0;
inter = p1.intersection(p2);
if inter.is_empty: return 0.0, 0.0;
minx, miny, maxx, maxy = inter.bounds; return maxx-minx, maxy-miny
except: return 0.0, 0.0
_MDR_CJKA_PATTERN = re.compile(r"[\u4e00-\u9fff\u3040-\u309f\u30a0-\u30ff\uac00-\ud7a3\u0600-\u06ff]")
def mdr_contains_cjka(text: str):
"""Checks if text contains Chinese, Japanese, Korean, or Arabic chars."""
return bool(_MDR_CJKA_PATTERN.search(text)) if text else False
# --- MDR Text Processing ---
class _MDR_TokenPhase(Enum): Init=0; Letter=1; Character=2; Number=3; Space=4
_mdr_alphabet_detector = AlphabetDetector()
def _mdr_is_letter(char: str):
if not category(char).startswith("L"): return False
try: return _mdr_alphabet_detector.is_latin(char) or _mdr_alphabet_detector.is_cyrillic(char) or _mdr_alphabet_detector.is_greek(char) or _mdr_alphabet_detector.is_hebrew(char)
except: return False
def mdr_split_into_words(text: str):
"""Splits text into words, numbers, and individual non-alphanumeric chars."""
if not text: return;
sp, np, nsp = re.compile(r"\s"), re.compile(r"\d"), re.compile(r"[\.,']");
buf, phase = io.StringIO(), _MDR_TokenPhase.Init;
for char in text:
is_l, is_d, is_s, is_ns = _mdr_is_letter(char), np.match(char), sp.match(char), nsp.match(char)
if is_l:
if phase in (_MDR_TokenPhase.Number, _MDR_TokenPhase.Character): w=buf.getvalue(); yield w if w else None; buf=io.StringIO()
buf.write(char); phase=_MDR_TokenPhase.Letter
elif is_d:
if phase in (_MDR_TokenPhase.Letter, _MDR_TokenPhase.Character): w=buf.getvalue(); yield w if w else None; buf=io.StringIO()
buf.write(char); phase=_MDR_TokenPhase.Number
elif phase==_MDR_TokenPhase.Number and is_ns: buf.write(char)
else:
if phase in (_MDR_TokenPhase.Letter, _MDR_TokenPhase.Number): w=buf.getvalue(); yield w if w else None; buf=io.StringIO()
if is_s: phase=_MDR_TokenPhase.Space
else: yield char; phase=_MDR_TokenPhase.Character
if phase in (_MDR_TokenPhase.Letter, _MDR_TokenPhase.Number): w=buf.getvalue(); yield w if w else None
def mdr_check_text_similarity(t1: str, t2: str) -> tuple[float, int]:
"""Calculates word-based similarity between two texts."""
w1, w2 = list(mdr_split_into_words(t1)), list(mdr_split_into_words(t2)); l1, l2 = len(w1), len(w2)
if l1==0 and l2==0: return 1.0, 0;
if l1==0 or l2==0: return 0.0, max(l1, l2);
if l1 > l2: w1, w2, l1, l2 = w2, w1, l2, l1;
taken = [False]*l2; matches = 0
for word1 in w1:
for i, word2 in enumerate(w2):
if not taken[i] and word1==word2: taken[i]=True; matches+=1; break
mismatches = l2 - matches; return 1.0 - (mismatches/l2), l2
# --- MDR Geometry Processing ---
class MDRRotationAdjuster:
"""Adjusts point coordinates based on image rotation."""
def __init__(self, origin_size: tuple[int, int], new_size: tuple[int, int], rotation: float, to_origin_coordinate: bool):
fs, ts = (new_size, origin_size) if to_origin_coordinate else (origin_size, new_size)
self._rot = rotation if to_origin_coordinate else -rotation
self._c_off = (fs[0]/2.0, fs[1]/2.0); self._n_off = (ts[0]/2.0, ts[1]/2.0)
def adjust(self, point: MDRPoint) -> MDRPoint:
x, y = point[0]-self._c_off[0], point[1]-self._c_off[1]
if x!=0 or y!=0: cos_r, sin_r = cos(self._rot), sin(self._rot); x, y = x*cos_r-y*sin_r, x*sin_r+y*cos_r
return x+self._n_off[0], y+self._n_off[1]
def mdr_normalize_vertical_rotation(rot: float) -> float:
while rot >= pi: rot -= pi;
while rot < 0: rot += pi;
return rot
def _mdr_get_rectangle_angles(rect: MDRRectangle) -> tuple[list[float], list[float]] | None:
h_angs, v_angs = [], []
for i, (p1, p2) in enumerate(rect.segments):
dx, dy = p2[0]-p1[0], p2[1]-p1[1];
if abs(dx)<1e-6 and abs(dy)<1e-6: continue;
ang = atan2(dy, dx);
if ang < 0: ang += pi;
if ang < pi*0.25 or ang >= pi*0.75: h_angs.append(ang-pi if ang>=pi*0.75 else ang)
else: v_angs.append(ang)
if not h_angs or not v_angs: return None
return h_angs, v_angs
def _mdr_normalize_horizontal_angles(rots: list[float]) -> list[float]: return rots
def _mdr_find_median(data: list[float]) -> float:
if not data: return 0.0; s_data = sorted(data); n = len(s_data);
return s_data[n//2] if n%2==1 else (s_data[n//2-1]+s_data[n//2])/2.0
def _mdr_find_mean(data: list[float]) -> float: return sum(data)/len(data) if data else 0.0
def mdr_calculate_image_rotation(frags: list[MDROcrFragment]) -> float:
all_h, all_v = [], [];
for f in frags:
res = _mdr_get_rectangle_angles(f.rect);
if res: h, v = res; all_h.extend(h); all_v.extend(v)
if not all_h or not all_v: return 0.0;
all_h = _mdr_normalize_horizontal_angles(all_h); all_v = [mdr_normalize_vertical_rotation(a) for a in all_v]
med_h, med_v = _mdr_find_median(all_h), _mdr_find_median(all_v);
rot_est = ((pi/2 - med_v) - med_h) / 2.0;
while rot_est >= pi/2: rot_est -= pi;
while rot_est < -pi/2: rot_est += pi;
return rot_est
def mdr_calculate_rectangle_rotation(rect: MDRRectangle) -> tuple[float, float]:
res = _mdr_get_rectangle_angles(rect);
if res is None: return 0.0, pi/2.0;
h_rots, v_rots = res;
h_rots = _mdr_normalize_horizontal_angles(h_rots); v_rots = [mdr_normalize_vertical_rotation(a) for a in v_rots]
return _mdr_find_mean(h_rots), _mdr_find_mean(v_rots)
# --- MDR ONNX OCR Internals ---
class _MDR_PredictBase:
"""Base class for ONNX model prediction components."""
def get_onnx_session(self, model_path: str, use_gpu: bool):
try:
sess_opts = onnxruntime.SessionOptions(); sess_opts.log_severity_level = 3
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if use_gpu and 'CUDAExecutionProvider' in onnxruntime.get_available_providers() else ['CPUExecutionProvider']
session = onnxruntime.InferenceSession(model_path, sess_options=sess_opts, providers=providers)
print(f" ONNX session loaded: {Path(model_path).name} ({session.get_providers()})")
return session
except Exception as e:
print(f" ERROR loading ONNX session {Path(model_path).name}: {e}")
if use_gpu and 'CUDAExecutionProvider' not in onnxruntime.get_available_providers():
print(" CUDAExecutionProvider not available. Check ONNXRuntime-GPU installation and CUDA setup.")
raise e
def get_output_name(self, sess: onnxruntime.InferenceSession) -> List[str]: return [n.name for n in sess.get_outputs()]
def get_input_name(self, sess: onnxruntime.InferenceSession) -> List[str]: return [n.name for n in sess.get_inputs()]
def get_input_feed(self, names: List[str], img_np: np.ndarray) -> Dict[str, np.ndarray]: return {name: img_np for name in names}
# --- MDR ONNX OCR Internals ---
class _MDR_NormalizeImage:
def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
self.scale = np.float32(eval(scale) if isinstance(scale, str) else (scale if scale is not None else 1.0 / 255.0))
mean = mean if mean is not None else [0.485, 0.456, 0.406]; std = std if std is not None else [0.229, 0.224, 0.225]
shape = (3, 1, 1) if order == 'chw' else (1, 1, 3); self.mean = np.array(mean).reshape(shape).astype('float32'); self.std = np.array(std).reshape(shape).astype('float32')
def __call__(self, data): img = data['image']; img = np.array(img) if isinstance(img, Image) else img; data['image'] = (img.astype('float32') * self.scale - self.mean) / self.std; return data
class _MDR_DetResizeForTest:
def __init__(self, **kwargs):
self.resize_type = 0; self.keep_ratio = False
if 'image_shape' in kwargs: self.image_shape = kwargs['image_shape']; self.resize_type = 1; self.keep_ratio = kwargs.get('keep_ratio', False)
elif 'limit_side_len' in kwargs: self.limit_side_len = kwargs['limit_side_len']; self.limit_type = kwargs.get('limit_type', 'min')
elif 'resize_long' in kwargs: self.resize_type = 2; self.resize_long = kwargs.get('resize_long', 960)
else: self.limit_side_len = 736; self.limit_type = 'min'
def __call__(self, data):
img = data['image']; src_h, src_w, _ = img.shape
if src_h + src_w < 64: img = self._pad(img)
if self.resize_type == 0: img, ratios = self._resize0(img)
elif self.resize_type == 2: img, ratios = self._resize2(img)
else: img, ratios = self._resize1(img)
if img is None: return None
data['image'] = img; data['shape'] = np.array([src_h, src_w, ratios[0], ratios[1]]); return data
def _pad(self, im, v=0): h,w,c=im.shape; p=np.zeros((max(32,h),max(32,w),c),np.uint8)+v; p[:h,:w,:]=im; return p
def _resize1(self, img): rh,rw=self.image_shape; oh,ow=img.shape[:2]; if self.keep_ratio: rw=ow*rh/oh; N=ceil(rw/32); rw=N*32; r_h,r_w=float(rh)/oh,float(rw)/ow; img=cv2.resize(img,(int(rw),int(rh))); return img,[r_h,r_w]
def _resize0(self, img): lsl=self.limit_side_len; h,w,_=img.shape; r=1.0; if self.limit_type=='max': r=float(lsl)/max(h,w) if max(h,w)>lsl else 1.0; elif self.limit_type=='min': r=float(lsl)/min(h,w) if min(h,w)<lsl else 1.0; elif self.limit_type=='resize_long': r=float(lsl)/max(h,w); else: raise Exception('Unsupported'); rh,rw=int(h*r),int(w*r); rh=max(int(round(rh/32)*32),32); rw=max(int(round(rw/32)*32),32); if int(rw)<=0 or int(rh)<=0: return None,(None,None); img=cv2.resize(img,(int(rw),int(rh))); r_h,r_w=rh/float(h),rw/float(w); return img,[r_h,r_w]
def _resize2(self, img): h,w,_=img.shape; rl=self.resize_long; r=float(rl)/max(h,w); rh,rw=int(h*r),int(w*r); ms=128; rh=(rh+ms-1)//ms*ms; rw=(rw+ms-1)//ms*ms; img=cv2.resize(img,(int(rw),int(rh))); r_h,r_w=rh/float(h),rw/float(w); return img,[r_h,r_w]
class _MDR_ToCHWImage:
def __call__(self, data): img=data['image']; img=np.array(img) if isinstance(img,Image) else img; data['image']=img.transpose((2,0,1)); return data
class _MDR_KeepKeys:
def __init__(self, keep_keys, **kwargs): self.keep_keys=keep_keys
def __call__(self, data): return [data[key] for key in self.keep_keys]
def mdr_ocr_transform(data, ops=None):
ops = ops if ops is not None else [];
for op in ops: data = op(data); if data is None: return None;
return data
def mdr_ocr_create_operators(op_param_list, global_config=None):
ops = []
for operator in op_param_list:
assert isinstance(operator, dict) and len(operator)==1, "Op config error"; op_name = list(operator)[0]
param = {} if operator[op_name] is None else operator[op_name];
if global_config: param.update(global_config)
op_class_name = f"_MDR_{op_name}" # Map to internal prefixed names
if op_class_name in globals() and isinstance(globals()[op_class_name], type): ops.append(globals()[op_class_name](**param))
else: raise ValueError(f"Operator class '{op_class_name}' not found.")
return ops
class _MDR_DBPostProcess:
def __init__(self, thresh=0.3, box_thresh=0.7, max_candidates=1000, unclip_ratio=1.5, use_dilation=False, score_mode="fast", box_type='quad', **kwargs):
self.thresh, self.box_thresh, self.max_cand = thresh, box_thresh, max_candidates; self.unclip_r, self.min_sz, self.score_m, self.box_t = unclip_ratio, 3, score_mode, box_type
assert score_mode in ["slow", "fast"]; self.dila_k = np.array([[1,1],[1,1]], dtype=np.uint8) if use_dilation else None
def _polygons_from_bitmap(self, pred, bmp, dw, dh):
h, w = bmp.shape; boxes, scores = [], []
contours, _ = cv2.findContours((bmp*255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours[:self.max_cand]:
eps = 0.002*cv2.arcLength(contour,True); approx = cv2.approxPolyDP(contour,eps,True); pts = approx.reshape((-1,2))
if pts.shape[0]<4: continue
score = self._box_score_fast(pred, pts.reshape(-1,2));
if self.box_thresh > score: continue
try: box = self._unclip(pts, self.unclip_r);
except: continue
if len(box)>1: continue; box = box.reshape(-1,2)
_, sside = self._get_mini_boxes(box.reshape((-1,1,2)));
if sside < self.min_sz+2: continue
box = np.array(box); box[:,0]=np.clip(np.round(box[:,0]/w*dw),0,dw); box[:,1]=np.clip(np.round(box[:,1]/h*dh),0,dh)
boxes.append(box.tolist()); scores.append(score)
return boxes, scores
def _boxes_from_bitmap(self, pred, bmp, dw, dh):
h, w = bmp.shape; contours, _ = cv2.findContours((bmp*255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
num_contours = min(len(contours), self.max_cand); boxes, scores = [], []
for i in range(num_contours):
contour = contours[i]; pts, sside = self._get_mini_boxes(contour);
if sside < self.min_sz: continue
pts = np.array(pts); score = self._box_score_fast(pred, pts.reshape(-1,2)) if self.score_m=="fast" else self._box_score_slow(pred, contour)
if self.box_thresh > score: continue
try: box = self._unclip(pts, self.unclip_r).reshape(-1,1,2)
except: continue
box, sside = self._get_mini_boxes(box);
if sside < self.min_sz+2: continue
box = np.array(box); box[:,0]=np.clip(np.round(box[:,0]/w*dw),0,dw); box[:,1]=np.clip(np.round(box[:,1]/h*dh),0,dh)
boxes.append(box.astype("int32")); scores.append(score)
return np.array(boxes, dtype="int32"), scores
def _unclip(self, box, ratio):
poly = Polygon(box); dist = poly.area*ratio/poly.length; offset = pyclipper.PyclipperOffset(); offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = offset.Execute(dist);
if not expanded: raise ValueError("Unclip failed"); return np.array(expanded[0])
def _get_mini_boxes(self, contour):
bb = cv2.minAreaRect(contour); pts = sorted(list(cv2.boxPoints(bb)), key=lambda x:x[0])
i1,i4 = (0,1) if pts[1][1]>pts[0][1] else (1,0); i2,i3 = (2,3) if pts[3][1]>pts[2][1] else (3,2)
box = [pts[i1], pts[i2], pts[i3], pts[i4]]; return box, min(bb[1])
def _box_score_fast(self, bmp, box):
h,w = bmp.shape[:2]; xmin=np.clip(np.floor(box[:,0].min()).astype("int32"),0,w-1); xmax=np.clip(np.ceil(box[:,0].max()).astype("int32"),0,w-1)
ymin=np.clip(np.floor(box[:,1].min()).astype("int32"),0,h-1); ymax=np.clip(np.ceil(box[:,1].max()).astype("int32"),0,h-1)
mask = np.zeros((ymax-ymin+1, xmax-xmin+1), dtype=np.uint8); box[:,0]-=xmin; box[:,1]-=ymin
cv2.fillPoly(mask, box.reshape(1,-1,2).astype("int32"), 1);
return cv2.mean(bmp[ymin:ymax+1, xmin:xmax+1], mask)[0] if np.sum(mask)>0 else 0.0
def _box_score_slow(self, bmp, contour): # Not used if fast
h,w = bmp.shape[:2]; contour = np.reshape(contour.copy(),(-1,2)); xmin=np.clip(np.min(contour[:,0]),0,w-1); xmax=np.clip(np.max(contour[:,0]),0,w-1)
ymin=np.clip(np.min(contour[:,1]),0,h-1); ymax=np.clip(np.max(contour[:,1]),0,h-1); mask=np.zeros((ymax-ymin+1,xmax-xmin+1),dtype=np.uint8)
contour[:,0]-=xmin; contour[:,1]-=ymin; cv2.fillPoly(mask, contour.reshape(1,-1,2).astype("int32"), 1);
return cv2.mean(bmp[ymin:ymax+1, xmin:xmax+1], mask)[0] if np.sum(mask)>0 else 0.0
def __call__(self, outs_dict, shape_list):
pred = outs_dict['maps'][:,0,:,:]; seg = pred > self.thresh; boxes_batch = []
for batch_idx in range(pred.shape[0]):
sh, sw, _, _ = shape_list[batch_idx]; mask = cv2.dilate(np.array(seg[batch_idx]).astype(np.uint8), self.dila_k) if self.dila_k is not None else seg[batch_idx]
if self.box_t=='poly': boxes, _ = self._polygons_from_bitmap(pred[batch_idx], mask, sw, sh)
elif self.box_t=='quad': boxes, _ = self._boxes_from_bitmap(pred[batch_idx], mask, sw, sh)
else: raise ValueError("box_type must be 'quad' or 'poly'")
boxes_batch.append({'points': boxes})
return boxes_batch
class _MDR_TextDetector(_MDR_PredictBase):
def __init__(self, args):
super().__init__(); self.args = args
pre_ops = [{'DetResizeForTest': {'limit_side_len': args.det_limit_side_len, 'limit_type': args.det_limit_type}}, {'NormalizeImage': {'std': [0.229,0.224,0.225], 'mean': [0.485,0.456,0.406], 'scale': '1./255.', 'order': 'hwc'}}, {'ToCHWImage': None}, {'KeepKeys': {'keep_keys': ['image', 'shape']}}]
self.pre_op = mdr_ocr_create_operators(pre_ops)
post_params = {'thresh': args.det_db_thresh, 'box_thresh': args.det_db_box_thresh, 'max_candidates': 1000, 'unclip_ratio': args.det_db_unclip_ratio, 'use_dilation': args.use_dilation, 'score_mode': args.det_db_score_mode, 'box_type': args.det_box_type}
self.post_op = _MDR_DBPostProcess(**post_params)
self.sess = self.get_onnx_session(args.det_model_dir, args.use_gpu)
self.input_name = self.get_input_name(self.sess); self.output_name = self.get_output_name(self.sess)
def _order_pts(self, pts): r=np.zeros((4,2),dtype="float32"); s=pts.sum(axis=1); r[0]=pts[np.argmin(s)]; r[2]=pts[np.argmax(s)]; tmp=np.delete(pts,(np.argmin(s),np.argmax(s)),axis=0); d=np.diff(np.array(tmp),axis=1); r[1]=tmp[np.argmin(d)]; r[3]=tmp[np.argmax(d)]; return r
def _clip_pts(self, pts, h, w): pts[:,0]=np.clip(pts[:,0],0,w-1); pts[:,1]=np.clip(pts[:,1],0,h-1); return pts
def _filter_quad(self, boxes, shape): h,w=shape[0:2]; new_boxes=[]; for box in boxes: box=np.array(box) if isinstance(box,list) else box; box=self._order_pts(box); box=self._clip_pts(box,h,w); rw=int(np.linalg.norm(box[0]-box[1])); rh=int(np.linalg.norm(box[0]-box[3])); if rw<=3 or rh<=3: continue; new_boxes.append(box); return np.array(new_boxes)
def _filter_poly(self, boxes, shape): h,w=shape[0:2]; new_boxes=[]; for box in boxes: box=np.array(box) if isinstance(box,list) else box; box=self._clip_pts(box,h,w); if Polygon(box).area<10: continue; new_boxes.append(box); return np.array(new_boxes)
def __call__(self, img):
ori_im = img.copy(); data = {"image": img}; data = mdr_ocr_transform(data, self.pre_op)
if data is None: return None; img, shape_list = data;
if img is None: return None; img = np.expand_dims(img, axis=0); shape_list = np.expand_dims(shape_list, axis=0); img = img.copy()
inputs = self.get_input_feed(self.input_name, img); outputs = self.sess.run(self.output_name, input_feed=inputs)
preds = {"maps": outputs[0]}; post_res = self.post_op(preds, shape_list); boxes = post_res[0]['points']
return self._filter_poly(boxes, ori_im.shape) if self.args.det_box_type=='poly' else self._filter_quad(boxes, ori_im.shape)
class _MDR_ClsPostProcess:
def __init__(self, label_list=None, **kwargs): self.labels = label_list if label_list else {0:'0', 1:'180'}
def __call__(self, preds, label=None, *args, **kwargs):
preds = np.array(preds) if not isinstance(preds, np.ndarray) else preds; idxs = preds.argmax(axis=1)
return [(self.labels[idx], float(preds[i,idx])) for i,idx in enumerate(idxs)]
class _MDR_TextClassifier(_MDR_PredictBase):
def __init__(self, args):
super().__init__(); self.shape = tuple(map(int, args.cls_image_shape.split(','))) if isinstance(args.cls_image_shape, str) else args.cls_image_shape
self.batch_num = args.cls_batch_num; self.thresh = args.cls_thresh; self.post_op = _MDR_ClsPostProcess(label_list=args.label_list)
self.sess = self.get_onnx_session(args.cls_model_dir, args.use_gpu); self.input_name = self.get_input_name(self.sess); self.output_name = self.get_output_name(self.sess)
def _resize_norm(self, img):
imgC,imgH,imgW = self.shape; h,w = img.shape[:2]; r=w/float(h) if h>0 else 0; rw=int(ceil(imgH*r)); rw=min(rw,imgW)
resized = cv2.resize(img,(rw,imgH)); resized = resized.astype("float32")
if imgC==1: resized = resized/255.0; resized = resized[np.newaxis,:]
else: resized = resized.transpose((2,0,1))/255.0
resized -= 0.5; resized /= 0.5; padding = np.zeros((imgC,imgH,imgW),dtype=np.float32); padding[:,:,0:rw]=resized; return padding
def __call__(self, img_list):
if not img_list: return img_list, []; img_list_cp = copy.deepcopy(img_list); num = len(img_list_cp)
ratios = [img.shape[1]/float(img.shape[0]) if img.shape[0]>0 else 0 for img in img_list_cp]; indices = np.argsort(np.array(ratios))
results = [["",0.0]]*num; batch_n = self.batch_num
for start in range(0, num, batch_n):
end = min(num, start+batch_n); batch = []
for i in range(start, end): batch.append(self._resize_norm(img_list_cp[indices[i]])[np.newaxis,:])
if not batch: continue; batch = np.concatenate(batch, axis=0).copy()
inputs = self.get_input_feed(self.input_name, batch); outputs = self.sess.run(self.output_name, input_feed=inputs)
cls_out = self.post_op(outputs[0])
for i in range(len(cls_out)):
orig_idx = indices[start+i]; label, score = cls_out[i]; results[orig_idx] = [label, score]
if "180" in label and score > self.thresh: img_list[orig_idx] = cv2.rotate(img_list[orig_idx], cv2.ROTATE_180)
return img_list, results
class _MDR_BaseRecLabelDecode:
def __init__(self, char_path=None, use_space=False):
self.beg, self.end, self.rev = "sos", "eos", False; self.chars = []
if char_path is None: self.chars = list("0123456789abcdefghijklmnopqrstuvwxyz")
else:
try:
with open(char_path,"rb") as f: self.chars=[l.decode("utf-8").strip("\n\r") for l in f]
if use_space: self.chars.append(" ")
if any("\u0600"<=c<="\u06FF" for c in self.chars): self.rev=True
except FileNotFoundError: print(f"Warn: Dict not found {char_path}"); self.chars=list("0123456789abcdefghijklmnopqrstuvwxyz"); if use_space: self.chars.append(" ")
d_char = self.add_special_char(list(self.chars)); self.dict={c:i for i,c in enumerate(d_char)}; self.character=d_char
def add_special_char(self, chars): return chars
def get_ignored_tokens(self): return []
def _reverse(self, pred): res=[]; cur=""; for c in pred: if not re.search("[a-zA-Z0-9 :*./%+-]",c): res.extend([cur,c] if cur!="" else [c]); cur="" else: cur+=c; if cur!="": res.append(cur); return "".join(res[::-1])
def decode(self, idxs, probs=None, remove_dup=False):
res=[]; ignored=self.get_ignored_tokens(); bs=len(idxs)
for b_idx in range(bs):
sel=np.ones(len(idxs[b_idx]),dtype=bool);
if remove_dup: sel[1:]=idxs[b_idx][1:]!=idxs[b_idx][:-1]
for ig_tok in ignored: sel &= idxs[b_idx]!=ig_tok
char_l = [self.character[tid] for tid in idxs[b_idx][sel] if 0<=tid<len(self.character)]
conf_l = probs[b_idx][sel] if probs is not None else [1]*len(char_l);
if len(conf_l)==0: conf_l=[0]
txt="".join(char_l);
if self.rev: txt=self._reverse(txt)
res.append((txt, float(np.mean(conf_l))))
return res
class _MDR_CTCLabelDecode(_MDR_BaseRecLabelDecode):
def __init__(self, char_path=None, use_space=False, **kwargs): super().__init__(char_path, use_space)
def add_special_char(self, chars): return ["blank"]+chars
def get_ignored_tokens(self): return [0] # blank index
def __call__(self, preds, label=None, *args, **kwargs):
preds = preds[-1] if isinstance(preds,(tuple,list)) else preds; preds = np.array(preds) if not isinstance(preds,np.ndarray) else preds
idxs=preds.argmax(axis=2); probs=preds.max(axis=2); txt=self.decode(idxs, probs, remove_dup=True); return txt
class _MDR_TextRecognizer(_MDR_PredictBase):
def __init__(self, args):
super().__init__(); shape_str=getattr(args,'rec_image_shape',"3,48,320"); self.shape=tuple(map(int,shape_str.split(',')))
self.batch_num=getattr(args,'rec_batch_num',6); self.algo=getattr(args,'rec_algorithm','SVTR_LCNet')
self.post_op=_MDR_CTCLabelDecode(char_path=args.rec_char_dict_path, use_space=getattr(args,'use_space_char',True))
self.sess=self.get_onnx_session(args.rec_model_dir, args.use_gpu); self.input_name=self.get_input_name(self.sess); self.output_name=self.get_output_name(self.sess)
def _resize_norm(self, img, max_r):
imgC,imgH,imgW = self.shape; h,w = img.shape[:2];
if h==0 or w==0: return np.zeros((imgC,imgH,imgW),dtype=np.float32)
r=w/float(h); tw=min(imgW, int(ceil(imgH*max(r,max_r)))); tw=max(1,tw)
resized=cv2.resize(img,(tw,imgH)); resized=resized.astype("float32")
if imgC==1 and len(resized.shape)==3: resized=cv2.cvtColor(resized,cv2.COLOR_BGR2GRAY); resized=resized[:,:,np.newaxis]
if len(resized.shape)==2: resized=resized[:,:,np.newaxis]
resized=resized.transpose((2,0,1))/255.0; resized-=0.5; resized/=0.5
padding=np.zeros((imgC,imgH,imgW),dtype=np.float32); padding[:,:,0:tw]=resized; return padding
def __call__(self, img_list):
if not img_list: return []; num=len(img_list); ratios=[img.shape[1]/float(img.shape[0]) if img.shape[0]>0 else 0 for img in img_list]
indices=np.argsort(np.array(ratios)); results=[["",0.0]]*num; batch_n=self.batch_num
for start in range(0, num, batch_n):
end=min(num, start+batch_n); batch=[]; max_r_batch=0
for i in range(start, end): h,w=img_list[indices[i]].shape[0:2]; if h>0: max_r_batch=max(max_r_batch, w/float(h))
for i in range(start, end): batch.append(self._resize_norm(img_list[indices[i]], max_r_batch)[np.newaxis,:])
if not batch: continue; batch=np.concatenate(batch, axis=0).copy()
inputs=self.get_input_feed(self.input_name, batch); outputs=self.sess.run(self.output_name, input_feed=inputs)
rec_out=self.post_op(outputs[0])
for i in range(len(rec_out)): results[indices[start+i]]=rec_out[i]
return results
# --- MDR ONNX OCR System ---
class _MDR_TextSystem:
def __init__(self, args):
class ArgsObject: # Helper to access dict args with dot notation
def __init__(self, **entries): self.__dict__.update(entries)
if isinstance(args, dict): args = ArgsObject(**args)
self.args = args
self.detector = _MDR_TextDetector(args)
self.recognizer = _MDR_TextRecognizer(args)
self.use_cls = getattr(args, 'use_angle_cls', True)
self.drop_score = getattr(args, 'drop_score', 0.5)
self.classifier = _MDR_TextClassifier(args) if self.use_cls else None
self.crop_idx = 0; self.save_crop = getattr(args, 'save_crop_res', False); self.crop_dir = getattr(args, 'crop_res_save_dir', "./output/mdr_crop_res")
def _sort_boxes(self, boxes):
if boxes is None or len(boxes)==0: return []
def key(box): min_y=min(p[1] for p in box); min_x=min(p[0] for p in box); return (min_y, min_x)
try: return list(sorted(boxes, key=key))
except: return list(boxes) # Fallback
def __call__(self, img, classify=True):
ori_im = img.copy(); boxes = self.detector(img)
if boxes is None or len(boxes)==0: return [], []
boxes = self._sort_boxes(boxes); crops = []
for b in boxes:
try: crops.append(mdr_get_rotated_crop(ori_im, b)) # Use renamed util
except: crops.append(None)
valid_idxs = [i for i,c in enumerate(crops) if c is not None];
if not valid_idxs: return [], []
crops = [crops[i] for i in valid_idxs]; boxes = [boxes[i] for i in valid_idxs]
if self.use_cls and self.classifier and classify:
try: crops, _ = self.classifier(crops) # Ignore cls results, just use rotated crops
except Exception as e: print(f"Classifier error: {e}")
try: rec_res = self.recognizer(crops)
except Exception as e: print(f"Recognizer error: {e}"); return boxes, [["",0.0]]*len(boxes)
final_boxes, final_rec = [], []
for box, res in zip(boxes, rec_res):
txt, score = res;
if score >= self.drop_score: final_boxes.append(box); final_rec.append(res)
if self.save_crop: self._save_crops(crops, rec_res)
return final_boxes, final_rec
def _save_crops(self, crops, recs):
mdr_ensure_directory(self.crop_dir); num = len(crops)
for i in range(num): txt, score = recs[i]; safe=re.sub(r'\W+', '_', txt)[:20]; fname=f"crop_{self.crop_idx+i}_{safe}_{score:.2f}.jpg"; cv2.imwrite(os.path.join(self.crop_dir, fname), crops[i])
self.crop_idx += num
# --- MDR ONNX OCR Utilities ---
def mdr_get_rotated_crop(img, points):
"""Crops and perspective-transforms a quadrilateral region."""
pts = np.array(points, dtype="float32"); assert len(pts)==4
w = int(max(np.linalg.norm(pts[0]-pts[1]), np.linalg.norm(pts[2]-pts[3])))
h = int(max(np.linalg.norm(pts[0]-pts[3]), np.linalg.norm(pts[1]-pts[2])))
std = np.float32([[0,0],[w,0],[w,h],[0,h]])
M = cv2.getPerspectiveTransform(pts, std)
dst = cv2.warpPerspective(img, M, (w,h), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC)
dh, dw = dst.shape[0:2]
if dh>0 and dw>0 and dh*1.0/dw >= 1.5: dst = cv2.rotate(dst, cv2.ROTATE_90_CLOCKWISE)
return dst
def mdr_get_min_area_crop(img, points):
"""Crops the minimum area rectangle containing the points."""
bb = cv2.minAreaRect(np.array(points).astype(np.int32)); box_pts = cv2.boxPoints(bb)
return mdr_get_rotated_crop(img, box_pts)
# --- MDR Layout Processing ---
_MDR_INCLUDES_MIN_RATE = 0.99
class _MDR_OverlapMatrixContext:
def __init__(self, layouts: list[MDRLayoutElement]):
length = len(layouts); self.polys: list[Polygon|None] = []
for l in layouts:
try: p = Polygon(l.rect); self.polys.append(p if p.is_valid else None)
except: self.polys.append(None)
self.matrix = [[0.0]*length for _ in range(length)]; self.removed = set()
for i in range(length):
p1 = self.polys[i];
if p1 is None: continue; self.matrix[i][i] = 1.0
for j in range(i+1, length):
p2 = self.polys[j];
if p2 is None: continue
r_ij = self._rate(p1, p2); r_ji = self._rate(p2, p1); self.matrix[i][j]=r_ij; self.matrix[j][i]=r_ji
def _rate(self, p1: Polygon, p2: Polygon) -> float: # Rate p1 covers p2
try: inter = p1.intersection(p2);
except: return 0.0
if inter.is_empty or inter.area < 1e-6: return 0.0
_, _, ix1, iy1 = inter.bounds; iw, ih = ix1-inter.bounds[0], iy1-inter.bounds[1]
_, _, px1, py1 = p2.bounds; pw, ph = px1-p2.bounds[0], py1-p2.bounds[1]
if pw < 1e-6 or ph < 1e-6: return 0.0
wr = min(iw/pw, 1.0); hr = min(ih/ph, 1.0); return (wr+hr)/2.0
def others(self, idx: int):
for i, r in enumerate(self.matrix[idx]):
if i != idx and i not in self.removed: yield r
def includes(self, idx: int): # Layouts included BY idx
for i, r in enumerate(self.matrix[idx]):
if i != idx and i not in self.removed and r >= _MDR_INCLUDES_MIN_RATE:
if self.matrix[i][idx] < _MDR_INCLUDES_MIN_RATE: yield i
def mdr_remove_overlap_layouts(layouts: list[MDRLayoutElement]) -> list[MDRLayoutElement]:
if not layouts: return []; ctx = _MDR_OverlapMatrixContext(layouts); prev_removed = -1
while len(ctx.removed) != prev_removed:
prev_removed = len(ctx.removed); current_removed = set()
for i in range(len(layouts)):
if i in ctx.removed or i in current_removed: continue;
li = layouts[i]; pi = ctx.polys[i]
if pi is None: current_removed.add(i); continue;
contained = False
for j in range(len(layouts)):
if i==j or j in ctx.removed or j in current_removed: continue
if ctx.matrix[j][i] >= _MDR_INCLUDES_MIN_RATE and ctx.matrix[i][j] < _MDR_INCLUDES_MIN_RATE: contained=True; break
if contained: current_removed.add(i); continue;
contained_by_i = list(ctx.includes(i))
if contained_by_i:
for j in contained_by_i:
if j not in ctx.removed and j not in current_removed: li.fragments.extend(layouts[j].fragments); current_removed.add(j)
li.fragments.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0]))
ctx.removed.update(current_removed)
return [l for i, l in enumerate(layouts) if i not in ctx.removed]
def _mdr_split_fragments_into_lines(frags: list[MDROcrFragment]) -> Generator[list[MDROcrFragment], None, None]:
if not frags: return; frags.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0]));
group, y_sum, h_sum = [], 0.0, 0.0
for f in frags:
_, y1, _, y2 = f.rect.wrapper; h = y2-y1; med_y = (y1+y2)/2.0
if h <= 0: continue;
if not group: group.append(f); y_sum, h_sum = med_y, h
else:
g_len = len(group); avg_med_y, avg_h = y_sum/g_len, h_sum/g_len
max_dev = avg_h * 0.40
if abs(med_y - avg_med_y) > max_dev: yield group; group, y_sum, h_sum = [f], med_y, h
else: group.append(f); y_sum += med_y; h_sum += h
if group: yield group
def mdr_merge_fragments_into_lines(orig_frags: list[MDROcrFragment]) -> list[MDROcrFragment]:
merged = [];
for group in _mdr_split_fragments_into_lines(orig_frags):
if not group: continue;
if len(group) == 1: merged.append(group[0]); continue;
group.sort(key=lambda f: f.rect.lt[0]);
min_order = min(f.order for f in group if hasattr(f, 'order')) if group else 0
texts, rank_w, txt_len = [], 0.0, 0
x1, y1, x2, y2 = float("inf"), float("inf"), float("-inf"), float("-inf")
for f in group:
fx1, fy1, fx2, fy2 = f.rect.wrapper; x1,y1,x2,y2 = min(x1,fx1), min(y1,fy1), max(x2,fx2), max(y2,fy2)
t = f.text; l = len(t);
if l > 0: texts.append(t); rank_w += f.rank*l; txt_len += l
if txt_len == 0: continue;
m_txt = " ".join(texts); m_rank = rank_w/txt_len if txt_len>0 else 0.0
m_rect = MDRRectangle(lt=(x1,y1), rt=(x2,y1), lb=(x1,y2), rb=(x2,y2))
merged.append(MDROcrFragment(order=min_order, text=m_txt, rank=m_rank, rect=m_rect))
merged.sort(key=lambda f: (f.order, f.rect.lt[1], f.rect.lt[0]))
for i, f in enumerate(merged): f.order = i
return merged
# --- MDR Layout Processing ---
_MDR_CORRECTION_MIN_OVERLAP = 0.5
def mdr_correct_layout_fragments(ocr_engine: 'MDROcrEngine', source_img: Image, layout: MDRLayoutElement):
if not layout.fragments: return;
try:
x1,y1,x2,y2 = layout.rect.wrapper; margin=5; crop_box=(max(0,round(x1)-margin), max(0,round(y1)-margin), min(source_img.width,round(x2)+margin), min(source_img.height,round(y2)+margin))
if crop_box[0]>=crop_box[2] or crop_box[1]>=crop_box[3]: return;
cropped = source_img.crop(crop_box); off_x, off_y = crop_box[0], crop_box[1]
except Exception as e: print(f"Correct: Crop error: {e}"); return;
try:
cropped_np = np.array(cropped.convert("RGB"))[:,:,::-1]; new_frags_local = list(ocr_engine.find_text_fragments(cropped_np))
except Exception as e: print(f"Correct: OCR error: {e}"); return;
new_frags_global = []
for f in new_frags_local:
r=f.rect; lt,rt,lb,rb=r.lt,r.rt,r.lb,r.rb; f.rect=MDRRectangle(lt=(lt[0]+off_x,lt[1]+off_y), rt=(rt[0]+off_x,rt[1]+off_y), lb=(lb[0]+off_x,lb[1]+off_y), rb=(rb[0]+off_x,rb[1]+off_y)); new_frags_global.append(f)
orig_frags = layout.fragments; matched, unmatched_orig = [], []; used_new = set()
for i, orig_f in enumerate(orig_frags):
best_j, best_rate = -1, -1.0;
try: poly_o = Polygon(orig_f.rect);
except: continue;
if not poly_o.is_valid: continue;
for j, new_f in enumerate(new_frags_global):
if j in used_new: continue;
try: poly_n = Polygon(new_f.rect);
except: continue;
if not poly_n.is_valid: continue;
try: inter=poly_o.intersection(poly_n); union=poly_o.union(poly_n)
except: continue;
rate = inter.area / union.area if union.area > 1e-6 else 0.0
if rate > _MDR_CORRECTION_MIN_OVERLAP and rate > best_rate: best_rate = rate; best_j = j
if best_j != -1: matched.append((orig_f, new_frags_global[best_j])); used_new.add(best_j)
else: unmatched_orig.append(orig_f)
unmatched_new = [f for j, f in enumerate(new_frags_global) if j not in used_new]
final = [n if n.rank >= o.rank else o for o, n in matched]; final.extend(unmatched_orig); final.extend(unmatched_new)
layout.fragments = final; layout.fragments.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0]))
# --- MDR OCR Engine ---
_MDR_OCR_MODELS = {"det": ("ppocrv4","det","det.onnx"), "cls": ("ppocrv4","cls","cls.onnx"), "rec": ("ppocrv4","rec","rec.onnx"), "keys": ("ch_ppocr_server_v2.0","ppocr_keys_v1.txt")}
_MDR_OCR_URL_BASE = "https://huggingface.co/moskize/OnnxOCR/resolve/main/"
@dataclass
class _MDR_ONNXParams: # Simplified container
use_gpu: bool; det_model_dir: str; cls_model_dir: str; rec_model_dir: str; rec_char_dict_path: str
use_angle_cls: bool=True; rec_image_shape: str="3,48,320"; cls_image_shape: str="3,48,192"; cls_batch_num: int=6; cls_thresh: float=0.9; label_list: list=['0','180']
det_algorithm: str="DB"; det_limit_side_len: int=960; det_limit_type: str='max'; det_db_thresh: float=0.3; det_db_box_thresh: float=0.6; det_db_unclip_ratio: float=1.5
use_dilation: bool=False; det_db_score_mode: str='fast'; det_box_type: str='quad'; rec_batch_num: int=6; drop_score: float=0.5; rec_algorithm: str="SVTR_LCNet"; use_space_char: bool=True
save_crop_res: bool=False; crop_res_save_dir: str="./output/mdr_crop_res"; show_log: bool=False; use_onnx: bool=True
class MDROcrEngine:
"""Handles OCR detection and recognition using ONNX models."""
def __init__(self, device: Literal["cpu", "cuda"], model_dir_path: str):
self._device = device; self._model_dir = mdr_ensure_directory(model_dir_path)
self._text_system: _MDR_TextSystem | None = None; self._onnx_params: _MDR_ONNXParams | None = None
self._ensure_models(); self._get_system() # Init on creation
def _ensure_models(self):
for key, parts in _MDR_OCR_MODELS.items():
fp = Path(self._model_dir) / Path(*parts)
if not fp.exists(): print(f"Downloading MDR OCR model: {fp.name}..."); url = _MDR_OCR_URL_BASE + "/".join(parts); mdr_download_model(url, fp)
def _get_system(self) -> _MDR_TextSystem | None:
if self._text_system is None:
paths = {k: str(Path(self._model_dir)/Path(*p)) for k,p in _MDR_OCR_MODELS.items()}
self._onnx_params = _MDR_ONNXParams(use_gpu=(self._device=="cuda"), det_model_dir=paths["det"], cls_model_dir=paths["cls"], rec_model_dir=paths["rec"], rec_char_dict_path=paths["keys"])
try: self._text_system = _MDR_TextSystem(self._onnx_params); print(f"MDR OCR System initialized.")
except Exception as e: print(f"ERROR initializing MDR OCR System: {e}"); self._text_system = None
return self._text_system
def find_text_fragments(self, image_np: np.ndarray) -> Generator[MDROcrFragment, None, None]:
"""Finds and recognizes text fragments in a NumPy image (BGR)."""
system = self._get_system()
if system is None: print("MDR OCR System unavailable."); return
img = self._preprocess(image_np)
try: boxes, recs = system(img)
except Exception as e: print(f"MDR OCR prediction error: {e}"); return
if not boxes or not recs: return
for box_pts, (txt, conf) in zip(boxes, recs):
if not txt or mdr_is_whitespace(txt) or conf < 0.1: continue
pts = [(float(p[0]), float(p[1])) for p in box_pts]
if len(pts)==4: r=MDRRectangle(lt=pts[0], rt=pts[1], rb=pts[2], lb=pts[3]); if r.is_valid and r.area>1: yield MDROcrFragment(order=-1, text=txt, rank=float(conf), rect=r)
def _preprocess(self, img: np.ndarray) -> np.ndarray:
if len(img.shape)==3 and img.shape[2]==4: a=img[:,:,3]/255.0; bg=(255,255,255); new=np.zeros_like(img[:,:,:3]); [setattr(new[:,:,i], 'flags.writeable', True) for i in range(3)]; [np.copyto(new[:,:,i], (bg[i]*(1-a)+img[:,:,i]*a)) for i in range(3)]; img=new.astype(np.uint8)
elif len(img.shape)==2: img=cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif not (len(img.shape)==3 and img.shape[2]==3): raise ValueError("Unsupported image format")
return img
# --- MDR Layout Reading Internals ---
_MDR_MAX_LEN = 510; _MDR_CLS_ID = 0; _MDR_SEP_ID = 2; _MDR_PAD_ID = 1
def mdr_boxes_to_reader_inputs(boxes: List[List[int]], max_len=_MDR_MAX_LEN) -> Dict[str, torch.Tensor]:
t_boxes = boxes[:max_len]; i_boxes = [[0,0,0,0]] + t_boxes + [[0,0,0,0]]
i_ids = [_MDR_CLS_ID] + [_MDR_PAD_ID]*len(t_boxes) + [_MDR_SEP_ID]
a_mask = [1]*len(i_ids); pad_len = (max_len+2) - len(i_ids)
if pad_len > 0: i_boxes.extend([[0,0,0,0]]*pad_len); i_ids.extend([_MDR_PAD_ID]*pad_len); a_mask.extend([0]*pad_len)
return {"bbox": torch.tensor([i_boxes]), "input_ids": torch.tensor([i_ids]), "attention_mask": torch.tensor([a_mask])}
def mdr_prepare_reader_inputs(inputs: Dict[str, torch.Tensor], model: LayoutLMv3ForTokenClassification) -> Dict[str, torch.Tensor]:
return {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
def mdr_parse_reader_logits(logits: torch.Tensor, length: int) -> List[int]:
if length == 0: return []; rel_logits = logits[1:length+1, :length]; orders = rel_logits.argmax(dim=1).tolist()
while True:
conflicts = defaultdict(list); [conflicts[order].append(idx) for idx, order in enumerate(orders)]
conflicting_orders = {o: idxs for o, idxs in conflicts.items() if len(idxs) > 1}
if not conflicting_orders: break
for order, idxs in conflicting_orders.items():
best_idx, max_logit = -1, -float('inf')
for idx in idxs: logit = rel_logits[idx, order].item(); if logit > max_logit: max_logit, best_idx = logit, idx
for idx in idxs:
if idx != best_idx:
orig_logit = rel_logits[idx, order].item(); rel_logits[idx, order] = -float('inf')
orders[idx] = rel_logits[idx, :].argmax().item(); rel_logits[idx, order] = orig_logit
return orders
# --- MDR Layout Reading Engine ---
@dataclass
class _MDR_ReaderBBox: layout_index: int; fragment_index: int; virtual: bool; order: int; value: tuple[float, float, float, float]
class MDRLayoutReader:
"""Determines reading order of layout elements using LayoutLMv3."""
def __init__(self, model_path: str):
self._model_path = model_path; self._model: LayoutLMv3ForTokenClassification | None = None
self._device = "cuda" if torch.cuda.is_available() else "cpu"
def _get_model(self) -> LayoutLMv3ForTokenClassification | None:
if self._model is None:
cache = mdr_ensure_directory(self._model_path); name = "microsoft/layoutlmv3-base"; h_path = os.path.join(cache, "models--hantian--layoutreader")
local = os.path.exists(h_path); load_p = h_path if local else name
try:
self._model = LayoutLMv3ForTokenClassification.from_pretrained(load_p, cache_dir=cache, local_files_only=local, num_labels=_MDR_MAX_LEN+1)
self._model.to(self._device); self._model.eval(); print(f"MDR LayoutReader loaded on {self._device}.")
except Exception as e: print(f"ERROR loading MDR LayoutReader: {e}"); self._model = None
return self._model
def determine_reading_order(self, layouts: list[MDRLayoutElement], size: tuple[int, int]) -> list[MDRLayoutElement]:
w, h = size;
if w<=0 or h<=0 or not layouts: return layouts;
model = self._get_model()
if model is None: # Fallback geometric sort
layouts.sort(key=lambda l: (l.rect.lt[1], l.rect.lt[0])); nfo = 0
for l in layouts: l.fragments.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0])); [setattr(f,'order',i+nfo) for i,f in enumerate(l.fragments)]; nfo += len(l.fragments)
return layouts
bbox_list = self._prepare_bboxes(layouts, w, h)
if bbox_list is None or len(bbox_list) == 0: return layouts
l_size = 1000.0; xs, ys = l_size/float(w), l_size/float(h)
scaled_bboxes = []
for bbox in bbox_list:
x0, y0, x1, y1 = bbox.value
sx0, sy0 = max(0, min(l_size-1, round(x0*xs))), max(0, min(l_size-1, round(y0*ys)))
sx1, sy1 = max(0, min(l_size-1, round(x1*xs))), max(0, min(l_size-1, round(y1*ys)))
scaled_bboxes.append([min(sx0, sx1), min(sy0, sy1), max(sx0, sx1), max(sy0, sy1)])
orders = []
try:
with torch.no_grad():
inputs = mdr_boxes_to_reader_inputs(scaled_bboxes); inputs = mdr_prepare_reader_inputs(inputs, model)
logits = model(**inputs).logits.cpu().squeeze(0); orders = mdr_parse_reader_logits(logits, len(bbox_list))
except Exception as e: print(f"MDR LayoutReader prediction error: {e}"); return layouts # Fallback
if len(orders) != len(bbox_list): print("MDR LayoutReader order mismatch"); return layouts # Fallback
for i, order_idx in enumerate(orders): bbox_list[i].order = order_idx
return self._apply_order(layouts, bbox_list)
def _prepare_bboxes(self, layouts: list[MDRLayoutElement], w: int, h: int) -> list[_MDR_ReaderBBox] | None:
line_h = self._estimate_line_h(layouts); bbox_list = []
for i, l in enumerate(layouts):
if l.cls == MDRLayoutClass.PLAIN_TEXT and l.fragments: [bbox_list.append(_MDR_ReaderBBox(i, j, False, -1, f.rect.wrapper)) for j, f in enumerate(l.fragments)]
else: bbox_list.extend(self._gen_virtual(l, i, line_h, w, h))
if len(bbox_list) > _MDR_MAX_LEN: print(f"Too many boxes ({len(bbox_list)}>{_MDR_MAX_LEN})"); return None
bbox_list.sort(key=lambda b: (b.value[1], b.value[0])); return bbox_list
def _apply_order(self, layouts: list[MDRLayoutElement], bbox_list: list[_MDR_ReaderBBox]) -> list[MDRLayoutElement]:
layout_map = defaultdict(list); [layout_map[b.layout_index].append(b) for b in bbox_list]
layout_orders = [(idx, self._median([b.order for b in bboxes])) for idx, bboxes in layout_map.items() if bboxes]
layout_orders.sort(key=lambda x: x[1]); sorted_layouts = [layouts[idx] for idx, _ in layout_orders]
nfo = 0
for l in sorted_layouts:
frags = l.fragments;
if not frags: continue;
frag_bboxes = [b for b in layout_map[layouts.index(l)] if not b.virtual]
if frag_bboxes: idx_to_order = {b.fragment_index: b.order for b in frag_bboxes}; frags.sort(key=lambda f: idx_to_order.get(frags.index(f), float('inf')))
else: frags.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0]))
for frag in frags: frag.order = nfo; nfo += 1
return sorted_layouts
def _estimate_line_h(self, layouts: list[MDRLayoutElement]) -> float:
heights = [f.rect.size[1] for l in layouts for f in l.fragments if f.rect.size[1]>0]
return self._median(heights) if heights else 15.0
def _gen_virtual(self, l: MDRLayoutElement, l_idx: int, line_h: float, pw: int, ph: int) -> Generator[_MDR_ReaderBBox, None, None]:
x0,y0,x1,y1 = l.rect.wrapper; lh,lw = y1-y0,x1-x0
if lh<=0 or lw<=0 or line_h<=0: yield _MDR_ReaderBBox(l_idx,-1,True,-1,(x0,y0,x1,y1)); return
lines = 1
if lh > line_h*1.5:
if lh<=ph*0.25 or lw>=pw*0.5: lines=3
elif lw>pw*0.25: lines = 3 if lw>pw*0.4 else 2
elif lw<=pw*0.25: lines = max(1, int(lh/(line_h*1.5))) if lh/lw>1.5 else 2
else: lines = max(1, int(round(lh/line_h)))
lines = max(1, lines); act_line_h = lh/lines; cur_y = y0
for i in range(lines):
ly0,ly1 = max(0,min(ph,cur_y)), max(0,min(ph,cur_y+act_line_h)); lx0,lx1 = max(0,min(pw,x0)), max(0,min(pw,x1))
if ly1>ly0 and lx1>lx0: yield _MDR_ReaderBBox(l_idx,-1,True,-1,(lx0,ly0,lx1,ly1))
cur_y += act_line_h
def _median(self, nums: list[float|int]) -> float:
if not nums: return 0.0; s_nums = sorted(nums); n = len(s_nums)
return float(s_nums[n//2]) if n%2==1 else float((s_nums[n//2-1]+s_nums[n//2])/2.0)
# --- MDR LaTeX Extractor ---
class MDRLatexExtractor:
"""Extracts LaTeX from formula images using pix2tex."""
def __init__(self, model_path: str):
self._model_path = model_path; self._model: LatexOCR | None = None
self._device = "cuda" if torch.cuda.is_available() else "cpu"
def extract(self, image: Image) -> str | None:
if LatexOCR is None: return None;
image = mdr_expand_image(image, 0.1); model = self._get_model()
if model is None: return None;
try:
with torch.no_grad(): img_rgb = image.convert('RGB') if image.mode!='RGB' else image; latex = model(img_rgb); return latex if latex else None
except Exception as e: print(f"MDR LaTeX error: {e}"); return None
def _get_model(self) -> LatexOCR | None:
if self._model is None and LatexOCR is not None:
mdr_ensure_directory(self._model_path); wp, rp, cp = Path(self._model_path)/"weights.pth", Path(self._model_path)/"image_resizer.pth", Path(self._model_path)/"config.yaml"
if not wp.exists() or not rp.exists(): print("Downloading MDR LaTeX models..."); self._download()
if not cp.exists(): print(f"Warn: MDR LaTeX config not found {self._model_path}")
try: args = Munch({"config":str(cp), "checkpoint":str(wp), "device":self._device, "no_cuda":self._device=="cpu", "no_resize":False, "temperature":0.0}); self._model = LatexOCR(args); print(f"MDR LaTeX loaded on {self._device}.")
except Exception as e: print(f"ERROR initializing MDR LatexOCR: {e}"); self._model = None
return self._model
def _download(self):
tag = "v0.0.1"; base = f"https://github.com/lukas-blecher/LaTeX-OCR/releases/download/{tag}/"; files = {"weights.pth": base+"weights.pth", "image_resizer.pth": base+"image_resizer.pth"}
mdr_ensure_directory(self._model_path); [mdr_download_model(url, Path(self._model_path)/name) for name, url in files.items() if not (Path(self._model_path)/name).exists()]
# --- MDR Table Parser ---
MDRTableOutputFormat = Literal["latex", "markdown", "html"]
class MDRTableParser:
"""Parses table structure/content from images using StructTable model."""
def __init__(self, device: Literal["cpu", "cuda"], model_path: str):
self._model: Any | None = None; self._model_path = mdr_ensure_directory(model_path)
self._device = device if torch.cuda.is_available() and device=="cuda" else "cpu"
self._disabled = self._device == "cpu"
if self._disabled: print("Warning: MDR Table parsing requires CUDA. Disabled.")
def parse_table_image(self, image: Image, format: MDRTableLayoutParsedFormat) -> str | None:
if self._disabled: return None;
fmt: MDRTableOutputFormat | None = None
if format == MDRTableLayoutParsedFormat.LATEX: fmt="latex"
elif format == MDRTableLayoutParsedFormat.MARKDOWN: fmt="markdown"
elif format == MDRTableLayoutParsedFormat.HTML: fmt="html"
else: return None
image = mdr_expand_image(image, 0.05); model = self._get_model()
if model is None: return None;
try:
img_rgb = image.convert('RGB') if image.mode!='RGB' else image
with torch.no_grad(): results = model([img_rgb], output_format=fmt)
return results[0] if results else None
except Exception as e: print(f"MDR Table parsing error: {e}"); return None
def _get_model(self):
if self._model is None and not self._disabled:
try:
from struct_eqtable import build_model # Dynamic import
name = "U4R/StructTable-InternVL2-1B"; local = any(Path(self._model_path).iterdir())
print(f"Loading MDR StructTable model '{name}'...")
model = build_model(model_ckpt=name, max_new_tokens=1024, max_time=30, lmdeploy=False, flash_attn=True, batch_size=1, cache_dir=self._model_path, local_files_only=local)
self._model = model.to(self._device); print(f"MDR StructTable loaded on {self._device}.")
except ImportError: print("ERROR: struct_eqtable not found."); self._disabled=True; self._model=None
except Exception as e: print(f"ERROR loading MDR StructTable: {e}"); self._model=None
return self._model
# --- MDR Image Optimizer ---
_MDR_TINY_ROTATION = 0.005
@dataclass
class _MDR_RotationContext: to_origin: MDRRotationAdjuster; to_new: MDRRotationAdjuster; fragment_origin_rectangles: list[MDRRectangle]
class MDRImageOptimizer:
"""Handles image rotation detection and coordinate adjustments."""
def __init__(self, raw_image: Image, adjust_points: bool):
self._raw = raw_image; self._image = raw_image; self._adjust_points = adjust_points
self._fragments: list[MDROcrFragment] = []; self._rotation: float = 0.0; self._rot_ctx: _MDR_RotationContext | None = None
@property
def image(self) -> Image: return self._image
@property
def adjusted_image(self) -> Image | None: return self._image if self._rot_ctx is not None else None
@property
def rotation(self) -> float: return self._rotation
@property
def image_np(self) -> np.ndarray: img_rgb = np.array(self._raw.convert("RGB")); return cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)
def receive_fragments(self, fragments: list[MDROcrFragment]):
self._fragments = fragments;
if not fragments: return;
self._rotation = mdr_calculate_image_rotation(fragments)
if abs(self._rotation) < _MDR_TINY_ROTATION: self._rotation = 0.0; return
orig_sz = self._raw.size
try: self._image = self._raw.rotate(-np.degrees(self._rotation), resample=PILResampling.BICUBIC, fillcolor=(255,255,255), expand=True)
except Exception as e: print(f"Optimizer rotation error: {e}"); self._rotation=0.0; self._image=self._raw; return
new_sz = self._image.size
self._rot_ctx = _MDR_RotationContext(
fragment_origin_rectangles=[f.rect for f in fragments],
to_new=MDRRotationAdjuster(orig_sz, new_sz, self._rotation, False),
to_origin=MDRRotationAdjuster(orig_sz, new_sz, self._rotation, True))
adj = self._rot_ctx.to_new; [setattr(f, 'rect', MDRRectangle(lt=adj.adjust(r.lt), rt=adj.adjust(r.rt), lb=adj.adjust(r.lb), rb=adj.adjust(r.rb))) for f in fragments if (r:=f.rect)]
def finalize_layout_coords(self, layouts: list[MDRLayoutElement]):
if self._rot_ctx is None or self._adjust_points: return
if len(self._fragments) == len(self._rot_ctx.fragment_origin_rectangles): [setattr(f, 'rect', orig_r) for f, orig_r in zip(self._fragments, self._rot_ctx.fragment_origin_rectangles)]
adj = self._rot_ctx.to_origin; [setattr(l, 'rect', MDRRectangle(lt=adj.adjust(r.lt), rt=adj.adjust(r.rt), lb=adj.adjust(r.lb), rb=adj.adjust(r.rb))) for l in layouts if (r:=l.rect)]
# --- MDR Image Clipping ---
def mdr_clip_from_image(image: Image, rect: MDRRectangle, wrap_w: float = 0.0, wrap_h: float = 0.0) -> Image:
"""Clips a potentially rotated rectangle from an image."""
try:
h_rot, _ = mdr_calculate_rectangle_rotation(rect); avg_w, avg_h = rect.size
if avg_w<=0 or avg_h<=0: return new_image("RGB", (1,1), (255,255,255))
tx, ty = rect.lt; trans_orig = np.array([[1,0,-tx],[0,1,-ty],[0,0,1]])
cos_r, sin_r = cos(-h_rot), sin(-h_rot); rot = np.array([[cos_r,-sin_r,0],[sin_r,cos_r,0],[0,0,1]])
pad_dx, pad_dy = wrap_w/2.0, wrap_h/2.0; trans_pad = np.array([[1,0,pad_dx],[0,1,pad_dy],[0,0,1]])
matrix = trans_pad @ rot @ trans_orig
try: inv_matrix = np.linalg.inv(matrix)
except np.linalg.LinAlgError: x0,y0,x1,y1=rect.wrapper; return image.crop((round(x0),round(y0),round(x1),round(y1)))
p_mat = (inv_matrix[0,0], inv_matrix[0,1], inv_matrix[0,2], inv_matrix[1,0], inv_matrix[1,1], inv_matrix[1,2])
out_w, out_h = ceil(avg_w+wrap_w), ceil(avg_h+wrap_h)
return image.transform((out_w, out_h), PILTransform.AFFINE, p_mat, PILResampling.BICUBIC, fillcolor=(255,255,255))
except Exception as e: print(f"MDR Clipping error: {e}"); return new_image("RGB", (10,10), (255,255,255))
def mdr_clip_layout(res: MDRExtractionResult, layout: MDRLayoutElement, wrap_w: float = 0.0, wrap_h: float = 0.0) -> Image:
"""Clips a layout region from the MDRExtractionResult image."""
img = res.adjusted_image if res.adjusted_image else res.extracted_image
return mdr_clip_from_image(img, layout.rect, wrap_w, wrap_h)
# --- MDR Debug Plotting ---
_MDR_FRAG_COLOR = (0x49, 0xCF, 0xCB, 200); _MDR_LAYOUT_COLORS = { MDRLayoutClass.TITLE: (0x0A,0x12,0x2C,255), MDRLayoutClass.PLAIN_TEXT: (0x3C,0x67,0x90,255), MDRLayoutClass.ABANDON: (0xC0,0xBB,0xA9,180), MDRLayoutClass.FIGURE: (0x5B,0x91,0x3C,255), MDRLayoutClass.FIGURE_CAPTION: (0x77,0xB3,0x54,255), MDRLayoutClass.TABLE: (0x44,0x17,0x52,255), MDRLayoutClass.TABLE_CAPTION: (0x81,0x75,0xA0,255), MDRLayoutClass.TABLE_FOOTNOTE: (0xEF,0xB6,0xC9,255), MDRLayoutClass.ISOLATE_FORMULA: (0xFA,0x38,0x27,255), MDRLayoutClass.FORMULA_CAPTION: (0xFF,0x9D,0x24,255) }; _MDR_DEFAULT_COLOR = (0x80,0x80,0x80,255); _MDR_RGBA = tuple[int,int,int,int]
def mdr_plot_layout(image: Image, layouts: Iterable[MDRLayoutElement]) -> None:
"""Draws layout and fragment boxes onto an image for debugging."""
if not layouts: return;
try: l_font, f_font = load_default(size=25), load_default(size=15); draw = ImageDraw.Draw(image, mode="RGBA")
except Exception as e: print(f"MDR Plot init error: {e}"); return
def _draw_num(pos: MDRPoint, num: int, font: FreeTypeFont, color: _MDR_RGBA):
try: x,y=pos; txt=str(num); txt_pos=(round(x)+3, round(y)+1); bbox=draw.textbbox(txt_pos,txt,font=font); bg_rect=(bbox[0]-2,bbox[1]-1,bbox[2]+2,bbox[3]+1); bg_color=(color[0],color[1],color[2],180); draw.rectangle(bg_rect,fill=bg_color); draw.text(txt_pos,txt,font=font,fill=(255,255,255,255))
except Exception as e: print(f"MDR Draw num error: {e}")
for i, l in enumerate(layouts):
try: l_color = _MDR_LAYOUT_COLORS.get(l.cls, _MDR_DEFAULT_COLOR); draw.polygon([p for p in l.rect], outline=l_color, width=3); _draw_num(l.rect.lt, i+1, l_font, l_color)
except Exception as e: print(f"MDR Layout draw error: {e}")
for l in layouts:
for f in l.fragments:
try: draw.polygon([p for p in f.rect], outline=_MDR_FRAG_COLOR, width=1)
except Exception as e: print(f"MDR Fragment draw error: {e}")
# --- MDR Extraction Engine ---
class MDRExtractionEngine:
"""Core engine for extracting structured information from a document image."""
def __init__(self, model_dir_path: str, device: Literal["cpu", "cuda"]="cpu", ocr_for_each_layouts: bool=True, extract_formula: bool=True, extract_table_format: MDRTableLayoutParsedFormat|None=None):
self._model_dir = model_dir_path # Base directory for all models
self._device = device if torch.cuda.is_available() else "cpu"
self._ocr_each = ocr_for_each_layouts; self._ext_formula = extract_formula; self._ext_table = extract_table_format
self._yolo: YOLOv10 | None = None
# Initialize sub-modules, passing the main model_dir_path
self._ocr_engine = MDROcrEngine(device=self._device, model_dir_path=os.path.join(self._model_dir, "onnx_ocr"))
self._table_parser = MDRTableParser(device=self._device, model_path=os.path.join(self._model_dir, "struct_eqtable"))
self._latex_extractor = MDRLatexExtractor(model_path=os.path.join(self._model_dir, "latex"))
self._layout_reader = MDRLayoutReader(model_path=os.path.join(self._model_dir, "layoutreader"))
print(f"MDR Extraction Engine initialized on device: {self._device}")
# --- MODIFIED _get_yolo_model METHOD for HF ---
def _get_yolo_model(self) -> YOLOv10 | None:
"""Loads the YOLOv10 layout detection model using hf_hub_download."""
if self._yolo is None and YOLOv10 is not None:
repo_id = "juliozhao/DocLayout-YOLO-DocStructBench"
filename = "doclayout_yolo_docstructbench_imgsz1024.pt"
# Use a subdirectory within the main model dir for YOLO cache via HF Hub
yolo_cache_dir = Path(self._model_dir) / "yolo_hf_cache"
mdr_ensure_directory(str(yolo_cache_dir)) # Ensure cache dir exists
print(f"Attempting to load YOLO model '{filename}' from repo '{repo_id}'...")
print(f"Hugging Face Hub cache directory for YOLO: {yolo_cache_dir}")
try:
# Download the model file using huggingface_hub, caching it
yolo_model_filepath = hf_hub_download(
repo_id=repo_id,
filename=filename,
cache_dir=yolo_cache_dir, # Cache within our designated structure
local_files_only=False, # Allow download
force_download=False, # Use cache if available
)
print(f"YOLO model file path: {yolo_model_filepath}")
# Load the model using the downloaded file path
self._yolo = YOLOv10(yolo_model_filepath)
print("MDR YOLOv10 model loaded successfully.")
except HfHubDownloadError as e:
print(f"ERROR: Failed to download YOLO model from Hugging Face Hub: {e}")
self._yolo = None
except FileNotFoundError as e: # Catch if hf_hub_download fails finding file
print(f"ERROR: YOLO model file not found via Hugging Face Hub: {e}")
self._yolo = None
except Exception as e:
print(f"ERROR: Failed to load YOLOv10 model from {yolo_model_filepath}: {e}")
self._yolo = None
elif YOLOv10 is None:
print("MDR YOLOv10 class not available. Layout detection skipped.")
return self._yolo
def analyze_image(self, image: Image, adjust_points: bool=False) -> MDRExtractionResult:
"""Analyzes a single page image to extract layout and content."""
print(" Engine: Analyzing image..."); optimizer = MDRImageOptimizer(image, adjust_points)
print(" Engine: Initial OCR..."); frags = list(self._ocr_engine.find_text_fragments(optimizer.image_np)); print(f" Engine: {len(frags)} fragments found.")
optimizer.receive_fragments(frags); frags = optimizer._fragments # Use adjusted fragments
print(" Engine: Layout detection..."); yolo = self._get_yolo_model(); raw_layouts = []
if yolo:
try: raw_layouts = list(self._run_yolo_detection(optimizer.image, yolo)); print(f" Engine: {len(raw_layouts)} raw layouts found.")
except Exception as e: print(f" Engine: YOLO error: {e}")
print(" Engine: Matching fragments..."); layouts = self._match_fragments_to_layouts(frags, raw_layouts)
print(" Engine: Removing overlaps..."); layouts = mdr_remove_overlap_layouts(layouts); print(f" Engine: {len(layouts)} layouts after overlap removal.")
if self._ocr_each and layouts: print(" Engine: OCR correction..."); self._run_ocr_correction(optimizer.image, layouts)
print(" Engine: Determining reading order..."); layouts = self._layout_reader.determine_reading_order(layouts, optimizer.image.size)
layouts = [l for l in layouts if self._should_keep_layout(l)]; print(f" Engine: {len(layouts)} layouts after filtering.")
if self._ext_table or self._ext_formula: print(" Engine: Parsing tables/formulas..."); self._parse_special_layouts(layouts, optimizer)
print(" Engine: Merging fragments..."); [setattr(l, 'fragments', mdr_merge_fragments_into_lines(l.fragments)) for l in layouts]
print(" Engine: Finalizing coords..."); optimizer.finalize_layout_coords(layouts)
print(" Engine: Analysis complete.")
return MDRExtractionResult(rotation=optimizer.rotation, layouts=layouts, extracted_image=image, adjusted_image=optimizer.adjusted_image)
def _run_yolo_detection(self, img: Image, yolo: YOLOv10) -> Generator[MDRLayoutElement, None, None]:
img_rgb = img.convert("RGB"); res = yolo.predict(source=img_rgb, imgsz=1024, conf=0.2, device=self._device, verbose=False)
if not res or not hasattr(res[0], 'boxes') or res[0].boxes is None: return
boxes = res[0].boxes
for cls_id_t, xyxy_t in zip(boxes.cls, boxes.xyxy):
cls_id = int(cls_id_t.item());
try: cls = MDRLayoutClass(cls_id)
except ValueError: continue
x1,y1,x2,y2 = [c.item() for c in xyxy_t]; rect = MDRRectangle(lt=(x1,y1), rt=(x2,y1), lb=(x1,y2), rb=(x2,y2))
if rect.is_valid and rect.area > 10:
if cls == MDRLayoutClass.TABLE: yield MDRTableLayoutElement(cls=cls, rect=rect, fragments=[], parsed=None)
elif cls == MDRLayoutClass.ISOLATE_FORMULA: yield MDRFormulaLayoutElement(cls=cls, rect=rect, fragments=[], latex=None)
elif cls in MDRPlainLayoutElement.__annotations__['cls'].__args__: yield MDRPlainLayoutElement(cls=cls, rect=rect, fragments=[])
def _match_fragments_to_layouts(self, frags: list[MDROcrFragment], layouts: list[MDRLayoutElement]) -> list[MDRLayoutElement]:
if not frags or not layouts: return layouts
layout_polys = [(Polygon(l.rect) if l.rect.is_valid else None) for l in layouts]
for frag in frags:
try: frag_poly = Polygon(frag.rect); frag_area = frag_poly.area
except: continue
if not frag_poly.is_valid or frag_area < 1e-6: continue
candidates = [] # (layout_idx, layout_area, overlap_ratio)
for idx, l_poly in enumerate(layout_polys):
if l_poly is None: continue
try: inter_area = frag_poly.intersection(l_poly).area
except: continue
overlap = inter_area / frag_area if frag_area > 0 else 0
if overlap > 0.85: candidates.append((idx, l_poly.area, overlap))
if candidates:
candidates.sort(key=lambda x: (x[1], -x[2])); best_idx = candidates[0][0]
layouts[best_idx].fragments.append(frag)
for l in layouts: l.fragments.sort(key=lambda f: (f.rect.lt[1], f.rect.lt[0]))
return layouts
def _run_ocr_correction(self, img: Image, layouts: list[MDRLayoutElement]):
for i, l in enumerate(layouts):
if l.cls == MDRLayoutClass.FIGURE: continue
try: mdr_correct_layout_fragments(self._ocr_engine, img, l)
except Exception as e: print(f" Engine: OCR correction error layout {i}: {e}")
def _parse_special_layouts(self, layouts: list[MDRLayoutElement], optimizer: MDRImageOptimizer):
img_to_clip = optimizer.image
for l in layouts:
if isinstance(l, MDRFormulaLayoutElement) and self._ext_formula:
try: f_img = mdr_clip_from_image(img_to_clip, l.rect); l.latex = self._latex_extractor.extract(f_img) if f_img.width>1 and f_img.height>1 else None
except Exception as e: print(f" Engine: LaTeX extract error: {e}")
elif isinstance(l, MDRTableLayoutElement) and self._ext_table is not None:
try: t_img = mdr_clip_from_image(img_to_clip, l.rect); parsed = self._table_parser.parse_table_image(t_img, self._ext_table) if t_img.width>1 and t_img.height>1 else None
except Exception as e: print(f" Engine: Table parse error: {e}"); parsed = None
if parsed: l.parsed = (parsed, self._ext_table)
def _should_keep_layout(self, l: MDRLayoutElement) -> bool:
if l.fragments and not all(mdr_is_whitespace(f.text) for f in l.fragments): return True
return l.cls in [MDRLayoutClass.FIGURE, MDRLayoutClass.TABLE, MDRLayoutClass.ISOLATE_FORMULA]
# --- MDR Page Section Linking ---
class _MDR_LinkedShape:
"""Internal helper for managing layout linking across pages."""
def __init__(self, layout: MDRLayoutElement): self.layout=layout; self.pre:list[MDRLayoutElement|None]=[None,None]; self.nex:list[MDRLayoutElement|None]=[None,None]
@property
def distance2(self) -> float: x,y=self.layout.rect.lt; return x*x+y*y
class MDRPageSection:
"""Represents a page's layouts for framework detection via linking."""
def __init__(self, page_index: int, layouts: Iterable[MDRLayoutElement]):
self._page_index = page_index; self._shapes = [_MDR_LinkedShape(l) for l in layouts]; self._shapes.sort(key=lambda s: (s.layout.rect.lt[1], s.layout.rect.lt[0]))
@property
def page_index(self) -> int: return self._page_index
def find_framework_elements(self) -> list[MDRLayoutElement]:
"""Identifies framework layouts based on links to other pages."""
return [s.layout for s in self._shapes if any(s.pre) or any(s.nex)]
def link_to_next(self, next_section: 'MDRPageSection', offset: int) -> None:
"""Links matching shapes between this section and the next."""
if offset not in (1,2): return
matches_matrix = [[sn for sn in next_section._shapes if self._shapes_match(ss, sn)] for ss in self._shapes]
origin_pair = self._find_origin_pair(matches_matrix, next_section._shapes)
if origin_pair is None: return
orig_s, orig_n = origin_pair; orig_s_pt, orig_n_pt = orig_s.layout.rect.lt, orig_n.layout.rect.lt
for i, s1 in enumerate(self._shapes):
potentials = matches_matrix[i];
if not potentials: continue
r1_rel = self._relative_rect(orig_s_pt, s1.layout.rect); best_s2, max_ovr = None, -1.0
for s2 in potentials:
r2_rel = self._relative_rect(orig_n_pt, s2.layout.rect); ovr = self._symmetric_iou(r1_rel, r2_rel)
if ovr > max_ovr: max_ovr, best_s2 = ovr, s2
if max_ovr >= 0.80 and best_s2 is not None: s1.nex[offset-1] = best_s2.layout; best_s2.pre[offset-1] = s1.layout # Link both ways
def _shapes_match(self, s1: _MDR_LinkedShape, s2: _MDR_LinkedShape) -> bool:
l1, l2 = s1.layout, s2.layout; sz1, sz2 = l1.rect.size, l2.rect.size; thresh = 0.90
if mdr_similarity_ratio(sz1[0], sz2[0]) < thresh or mdr_similarity_ratio(sz1[1], sz2[1]) < thresh: return False
f1, f2 = l1.fragments, l2.fragments; c1, c2 = len(f1), len(f2)
if c1==0 and c2==0: return True;
if c1==0 or c2==0: return False;
matches, used_f2 = 0, [False]*c2
for frag1 in f1:
best_j, max_sim = -1, -1.0
for j, frag2 in enumerate(f2):
if not used_f2[j]: sim = self._fragment_sim(l1, l2, frag1, frag2); if sim > max_sim: max_sim, best_j = sim, j
if max_sim > 0.75: matches += 1; if best_j != -1: used_f2[best_j] = True
max_c = max(c1, c2); rate_frags = matches / max_c
return self._check_match_threshold(rate_frags, max_c, (0.0, 0.45, 0.45, 0.6, 0.8, 0.95))
def _fragment_sim(self, l1: MDRLayoutElement, l2: MDRLayoutElement, f1: MDROcrFragment, f2: MDROcrFragment) -> float:
r1_rel = self._relative_rect(l1.rect.lt, f1.rect); r2_rel = self._relative_rect(l2.rect.lt, f2.rect)
geom_sim = self._symmetric_iou(r1_rel, r2_rel); text_sim, _ = mdr_check_text_similarity(f1.text, f2.text)
return (geom_sim + text_sim) / 2.0
def _find_origin_pair(self, matches_matrix: list[list[_MDR_LinkedShape]], next_shapes: list[_MDR_LinkedShape]) -> tuple[_MDR_LinkedShape, _MDR_LinkedShape] | None:
best_pair, min_dist2 = None, float('inf')
for i, s1 in enumerate(self._shapes):
match_list = matches_matrix[i];
if not match_list: continue
for s2 in match_list: dist2 = s1.distance2 + s2.distance2; if dist2 < min_dist2: min_dist2, best_pair = dist2, (s1, s2)
return best_pair
def _check_match_threshold(self, rate: float, count: int, thresholds: Sequence[float]) -> bool:
if not thresholds: return False; idx = min(count, len(thresholds)-1); return rate >= thresholds[idx]
def _relative_rect(self, origin: MDRPoint, rect: MDRRectangle) -> MDRRectangle:
ox, oy = origin; r=rect; return MDRRectangle(lt=(r.lt[0]-ox, r.lt[1]-oy), rt=(r.rt[0]-ox, r.rt[1]-oy), lb=(r.lb[0]-ox, r.lb[1]-oy), rb=(r.rb[0]-ox, r.rb[1]-oy))
def _symmetric_iou(self, r1: MDRRectangle, r2: MDRRectangle) -> float:
try: p1, p2 = Polygon(r1), Polygon(r2);
except: return 0.0
if not p1.is_valid or not p2.is_valid: return 0.0
try: inter = p1.intersection(p2); union = p1.union(p2)
except: return 0.0
if inter.is_empty or inter.area < 1e-6: return 0.0
union_area = union.area; return inter.area / union_area if union_area > 1e-6 else 1.0
# --- MDR Document Iterator ---
_MDR_CONTEXT_PAGES = 2 # Look behind/ahead pages for context
@dataclass
class MDRProcessingParams:
"""Parameters for processing a document."""
pdf: str | FitzDocument; page_indexes: Iterable[int] | None; report_progress: MDRProgressReportCallback | None
class MDRDocumentIterator:
"""Iterates through document pages, handles context, and calls the extraction engine."""
def __init__(self, device: Literal["cpu", "cuda"], model_dir_path: str, ocr_level: MDROcrLevel, extract_formula: bool, extract_table_format: MDRTableLayoutParsedFormat | None, debug_dir_path: str | None):
self._debug_dir = debug_dir_path
self._engine = MDRExtractionEngine(device=device, model_dir_path=model_dir_path, ocr_for_each_layouts=(ocr_level==MDROcrLevel.OncePerLayout), extract_formula=extract_formula, extract_table_format=extract_table_format)
def iterate_sections(self, params: MDRProcessingParams) -> Generator[tuple[int, MDRExtractionResult, list[MDRLayoutElement]], None, None]:
"""Yields page index, extraction result, and content layouts for each requested page."""
for res, sec in self._process_and_link_sections(params):
framework = set(sec.find_framework_elements()); content = [l for l in res.layouts if l not in framework]; yield sec.page_index, res, content
def _process_and_link_sections(self, params: MDRProcessingParams) -> Generator[tuple[MDRExtractionResult, MDRPageSection], None, None]:
queue: list[tuple[MDRExtractionResult, MDRPageSection]] = []
for page_idx, res in self._run_extraction_on_pages(params):
cur_sec = MDRPageSection(page_idx, res.layouts)
for i, (_, prev_sec) in enumerate(queue):
offset = len(queue)-i;
if offset <= _MDR_CONTEXT_PAGES: prev_sec.link_to_next(cur_sec, offset)
queue.append((res, cur_sec))
if len(queue) > _MDR_CONTEXT_PAGES: yield queue.pop(0)
for res, sec in queue: yield res, sec
def _run_extraction_on_pages(self, params: MDRProcessingParams) -> Generator[tuple[int, MDRExtractionResult], None, None]:
if self._debug_dir: mdr_ensure_directory(self._debug_dir)
doc, should_close = None, False
if isinstance(params.pdf, str):
try: doc = fitz.open(params.pdf); should_close = True
except Exception as e: print(f"ERROR: PDF open failed: {e}"); return
elif isinstance(params.pdf, FitzDocument): doc = params.pdf
else: print(f"ERROR: Invalid PDF type: {type(params.pdf)}"); return
scan_idxs, enable_idxs = self._get_page_ranges(doc, params.page_indexes)
enable_set = set(enable_idxs); total_scan = len(scan_idxs)
try:
for i, page_idx in enumerate(scan_idxs):
print(f" Iterator: Processing page {page_idx+1}/{doc.page_count} (Scan {i+1}/{total_scan})...")
try:
page = doc.load_page(page_idx); img = self._render_page_image(page, 300)
res = self._engine.analyze_image(image=img, adjust_points=False) # Engine analyzes image
if self._debug_dir: self._save_debug_plot(img, page_idx, res, self._debug_dir)
if page_idx in enable_set: yield page_idx, res # Yield result for requested pages
if params.report_progress: params.report_progress(i+1, total_scan)
except Exception as e: print(f" Iterator: Page {page_idx+1} processing error: {e}")
finally:
if should_close and doc: doc.close()
def _get_page_ranges(self, doc: FitzDocument, idxs: Iterable[int]|None) -> tuple[Sequence[int], Sequence[int]]:
count = doc.page_count;
if idxs is None: all_p = list(range(count)); return all_p, all_p
enable, scan = set(), set()
for i in idxs:
if 0<=i<count: enable.add(i); [scan.add(j) for j in range(max(0, i-_MDR_CONTEXT_PAGES), min(count, i+_MDR_CONTEXT_PAGES+1))]
return sorted(list(scan)), sorted(list(enable))
def _render_page_image(self, page: FitzPage, dpi: int) -> Image:
mat = FitzMatrix(dpi/72.0, dpi/72.0); pix = page.get_pixmap(matrix=mat, alpha=False)
return frombytes("RGB", (pix.width, pix.height), pix.samples)
def _save_debug_plot(self, img: Image, idx: int, res: MDRExtractionResult, path: str):
try: plot_img = res.adjusted_image.copy() if res.adjusted_image else img.copy(); mdr_plot_layout(plot_img, res.layouts); plot_img.save(os.path.join(path, f"mdr_plot_page_{idx+1}.png"))
except Exception as e: print(f" Iterator: Plot generation error page {idx+1}: {e}")
# --- MagicDataReadiness Main Processor ---
class MagicPDFProcessor:
"""
Main class for processing PDF documents to extract structured data blocks
using the MagicDataReadiness pipeline.
"""
def __init__(self, device: Literal["cpu", "cuda"]="cuda", model_dir_path: str="./mdr_models", ocr_level: MDROcrLevel=MDROcrLevel.Once, extract_formula: bool=True, extract_table_format: MDRExtractedTableFormat|None=None, debug_dir_path: str|None=None):
"""
Initializes the MagicPDFProcessor.
Args:
device: Computation device ('cpu' or 'cuda'). Defaults to 'cuda'. Fallbacks to 'cpu' if CUDA not available.
model_dir_path: Path to directory for storing/caching downloaded models. Defaults to './mdr_models'.
ocr_level: Level of OCR application (Once per page or Once per layout). Defaults to Once per page.
extract_formula: Whether to attempt LaTeX extraction from formula images. Defaults to True.
extract_table_format: Desired format for extracted table content (LATEX, MARKDOWN, HTML, DISABLE, or None).
Defaults to LATEX if CUDA is available, otherwise DISABLE.
debug_dir_path: Optional path to save debug plots and intermediate files. Defaults to None (disabled).
"""
actual_dev = device if torch.cuda.is_available() else "cpu"; print(f"MagicPDFProcessor using device: {actual_dev}.")
if extract_table_format is None: extract_table_format = MDRExtractedTableFormat.LATEX if actual_dev=="cuda" else MDRExtractedTableFormat.DISABLE
table_fmt_internal: MDRTableLayoutParsedFormat|None = None
if extract_table_format==MDRExtractedTableFormat.LATEX: table_fmt_internal=MDRTableLayoutParsedFormat.LATEX
elif extract_table_format==MDRExtractedTableFormat.MARKDOWN: table_fmt_internal=MDRTableLayoutParsedFormat.MARKDOWN
elif extract_table_format==MDRExtractedTableFormat.HTML: table_fmt_internal=MDRTableLayoutParsedFormat.HTML
self._iterator = MDRDocumentIterator(device=actual_dev, model_dir_path=model_dir_path, ocr_level=ocr_level, extract_formula=extract_formula, extract_table_format=table_fmt_internal, debug_dir_path=debug_dir_path)
print("MagicPDFProcessor initialized.")
def process_document(self, pdf_input: str|FitzDocument, report_progress: MDRProgressReportCallback|None=None) -> Generator[MDRStructuredBlock, None, None]:
"""
Processes the entire PDF document and yields all extracted structured blocks.
Args:
pdf_input: Path to the PDF file or a loaded fitz.Document object.
report_progress: Optional callback function for progress updates (receives completed_scan_pages, total_scan_pages).
Yields:
MDRStructuredBlock: An extracted block (MDRTextBlock, MDRTableBlock, etc.).
"""
print(f"Processing document: {pdf_input if isinstance(pdf_input, str) else 'FitzDocument object'}")
for _, blocks, _ in self.process_document_pages(pdf_input=pdf_input, report_progress=report_progress, page_indexes=None):
yield from blocks
print("Document processing complete.")
def process_document_pages(self, pdf_input: str|FitzDocument, page_indexes: Iterable[int]|None=None, report_progress: MDRProgressReportCallback|None=None) -> Generator[tuple[int, list[MDRStructuredBlock], Image], None, None]:
"""
Processes specific pages (or all if page_indexes is None) of the PDF document.
Yields results page by page, including the page index, extracted blocks, and the original page image.
Args:
pdf_input: Path to the PDF file or a loaded fitz.Document object.
page_indexes: An iterable of 0-based page indices to process. If None, processes all pages.
report_progress: Optional callback function for progress updates.
Yields:
tuple[int, list[MDRStructuredBlock], Image]:
- page_index (0-based)
- list of extracted MDRStructuredBlock objects for that page
- PIL Image object of the original rendered page
"""
params = MDRProcessingParams(pdf=pdf_input, page_indexes=page_indexes, report_progress=report_progress)
page_count = 0
for page_idx, extraction_result, content_layouts in self._iterator.iterate_sections(params):
page_count += 1
print(f"Processor: Converting layouts to blocks for page {page_idx+1}...")
blocks = self._create_structured_blocks(extraction_result, content_layouts)
print(f"Processor: Analyzing paragraph structure for page {page_idx+1}...")
self._analyze_paragraph_structure(blocks)
print(f"Processor: Yielding results for page {page_idx+1}.")
yield page_idx, blocks, extraction_result.extracted_image # Yield original image
print(f"Processor: Finished processing {page_count} pages.")
def _create_structured_blocks(self, result: MDRExtractionResult, layouts: list[MDRLayoutElement]) -> list[MDRStructuredBlock]:
"""Converts MDRLayoutElement objects into MDRStructuredBlock objects."""
temp_store: list[tuple[MDRLayoutElement, MDRStructuredBlock]] = []
for layout in layouts:
if isinstance(layout, MDRPlainLayoutElement): self._add_plain_block(temp_store, layout, result)
elif isinstance(layout, MDRTableLayoutElement): temp_store.append((layout, self._create_table_block(layout, result)))
elif isinstance(layout, MDRFormulaLayoutElement): temp_store.append((layout, self._create_formula_block(layout, result)))
self._assign_relative_font_sizes(temp_store);
return [block for _, block in temp_store]
# --- START REFACTORED METHOD ---
def _analyze_paragraph_structure(self, blocks: list[MDRStructuredBlock]):
"""
Calculates indentation and line-end heuristics for MDRTextBlocks
based on page-level text boundaries and average line height.
"""
# Define constants for clarity and maintainability
MIN_VALID_HEIGHT = 1e-6
# Heuristic: Indent if first line starts more than 1.0 * avg line height from page text start
INDENTATION_THRESHOLD_FACTOR = 1.0
# Heuristic: Last line touches end if it ends less than 1.0 * avg line height from page text end
LINE_END_THRESHOLD_FACTOR = 1.0
# Calculate average line height and text boundaries for the relevant text blocks on the page
page_avg_line_height, page_min_x, page_max_x = self._calculate_text_range(
(b for b in blocks if isinstance(b, MDRTextBlock) and b.kind != MDRTextKind.ABANDON)
)
# Avoid calculations if page metrics are invalid (e.g., no text, zero height)
if page_avg_line_height <= MIN_VALID_HEIGHT:
return
# Iterate through each block to determine its paragraph properties
for block in blocks:
# Process only valid text blocks with actual text content
if not isinstance(block, MDRTextBlock) or block.kind == MDRTextKind.ABANDON or not block.texts:
continue
# Use calculated page-level metrics for consistency in thresholds
avg_line_height = page_avg_line_height
page_text_start_x = page_min_x
page_text_end_x = page_max_x
# Get the first and last text spans (assumed to be lines after merging) within the block
first_text_span = block.texts[0]
last_text_span = block.texts[-1]
try:
# --- Calculate Indentation ---
# Estimate the starting x-coordinate of the first line (average of left top/bottom)
first_line_start_x = (first_text_span.rect.lt[0] + first_text_span.rect.lb[0]) / 2.0
# Calculate the difference between the first line's start and the page's text start boundary
indentation_delta = first_line_start_x - page_text_start_x
# Determine indentation based on the heuristic threshold relative to average line height
block.has_paragraph_indentation = indentation_delta > (avg_line_height * INDENTATION_THRESHOLD_FACTOR)
# --- Calculate Last Line End ---
# Estimate the ending x-coordinate of the last line (average of right top/bottom)
last_line_end_x = (last_text_span.rect.rt[0] + last_text_span.rect.rb[0]) / 2.0
# Calculate the difference between the page's text end boundary and the last line's end
line_end_delta = page_text_end_x - last_line_end_x
# Determine if the last line reaches near the end based on the heuristic threshold
block.last_line_touch_end = line_end_delta < (avg_line_height * LINE_END_THRESHOLD_FACTOR)
except Exception as e:
# Handle potential errors during calculation (e.g., invalid rect data)
print(f"Warn: Error calculating paragraph structure for block: {e}")
# Default to False if calculation fails to ensure attributes are set
block.has_paragraph_indentation = False
block.last_line_touch_end = False # Removed semicolon from original
# --- END REFACTORED METHOD ---
def _calculate_text_range(self, blocks_iter: Iterable[MDRStructuredBlock]) -> tuple[float, float, float]:
"""Calculates average line height and min/max x-coordinates for text."""
h_sum, count, x1, x2 = 0.0, 0, float('inf'), float('-inf')
for b in blocks_iter:
if not isinstance(b, MDRTextBlock) or b.kind==MDRTextKind.ABANDON: continue
for t in b.texts:
_, h = t.rect.size;
if h>1e-6: h_sum += h; count += 1 # Use small threshold for valid height
tx1, _, tx2, _ = t.rect.wrapper; x1, x2 = min(x1, tx1), max(x2, tx2)
if count==0: return 0.0, 0.0, 0.0
mean_h = h_sum/count; x1 = 0.0 if x1==float('inf') else x1; x2 = 0.0 if x2==float('-inf') else x2; return mean_h, x1, x2
def _add_plain_block(self, store: list[tuple[MDRLayoutElement, MDRStructuredBlock]], layout: MDRPlainLayoutElement, result: MDRExtractionResult):
"""Creates MDRStructuredBlocks for plain layout types."""
cls = layout.cls; texts = self._convert_fragments_to_spans(layout.fragments)
if cls==MDRLayoutClass.TITLE: store.append((layout, MDRTextBlock(layout.rect, texts, 0.0, MDRTextKind.TITLE)))
elif cls==MDRLayoutClass.PLAIN_TEXT: store.append((layout, MDRTextBlock(layout.rect, texts, 0.0, MDRTextKind.PLAIN_TEXT)))
elif cls==MDRLayoutClass.ABANDON: store.append((layout, MDRTextBlock(layout.rect, texts, 0.0, MDRTextKind.ABANDON)))
elif cls==MDRLayoutClass.FIGURE: store.append((layout, MDRFigureBlock(layout.rect, [], 0.0, mdr_clip_layout(result, layout))))
elif cls==MDRLayoutClass.FIGURE_CAPTION: block=self._find_previous_block(store, MDRFigureBlock); block.texts.extend(texts) if block else None
elif cls==MDRLayoutClass.TABLE_CAPTION or cls==MDRLayoutClass.TABLE_FOOTNOTE: block=self._find_previous_block(store, MDRTableBlock); block.texts.extend(texts) if block else None
elif cls==MDRLayoutClass.FORMULA_CAPTION: block=self._find_previous_block(store, MDRFormulaBlock); block.texts.extend(texts) if block else None
def _find_previous_block(self, store: list[tuple[MDRLayoutElement, MDRStructuredBlock]], block_type: type) -> MDRStructuredBlock | None:
"""Finds the most recent block of a specific type."""
for i in range(len(store)-1, -1, -1):
_, block = store[i];
if isinstance(block, block_type): return block
return None
def _create_table_block(self, layout: MDRTableLayoutElement, result: MDRExtractionResult) -> MDRTableBlock:
"""Converts MDRTableLayoutElement to MDRTableBlock."""
fmt, content = MDRTableFormat.UNRECOGNIZABLE, ""
if layout.parsed:
p_content, p_fmt = layout.parsed; can_use = not (p_fmt==MDRTableLayoutParsedFormat.LATEX and mdr_contains_cjka("".join(f.text for f in layout.fragments)))
if can_use:
content = p_content
if p_fmt==MDRTableLayoutParsedFormat.LATEX: fmt=MDRTableFormat.LATEX
elif p_fmt==MDRTableLayoutParsedFormat.MARKDOWN: fmt=MDRTableFormat.MARKDOWN
elif p_fmt==MDRTableLayoutParsedFormat.HTML: fmt=MDRTableFormat.HTML
return MDRTableBlock(layout.rect, [], 0.0, fmt, content, mdr_clip_layout(result, layout))
def _create_formula_block(self, layout: MDRFormulaLayoutElement, result: MDRExtractionResult) -> MDRFormulaBlock:
"""Converts MDRFormulaLayoutElement to MDRFormulaBlock."""
content = layout.latex if layout.latex and not mdr_contains_cjka("".join(f.text for f in layout.fragments)) else None
return MDRFormulaBlock(layout.rect, [], 0.0, content, mdr_clip_layout(result, layout))
def _assign_relative_font_sizes(self, store: list[tuple[MDRLayoutElement, MDRStructuredBlock]]):
"""Calculates and assigns relative font size (0-1) to blocks."""
sizes = []
for l, _ in store:
heights = [f.rect.size[1] for f in l.fragments if f.rect.size[1]>1e-6] # Use small threshold
avg_h = sum(heights)/len(heights) if heights else 0.0
sizes.append(avg_h)
valid = [s for s in sizes if s>1e-6]; min_s, max_s = (min(valid), max(valid)) if valid else (0.0, 0.0)
rng = max_s - min_s
if rng < 1e-6: [setattr(b, 'font_size', 0.0) for _, b in store]
else: [setattr(b, 'font_size', (s-min_s)/rng if s>1e-6 else 0.0) for s, (_, b) in zip(sizes, store)]
def _convert_fragments_to_spans(self, frags: list[MDROcrFragment]) -> list[MDRTextSpan]:
"""Converts MDROcrFragment list to MDRTextSpan list."""
return [MDRTextSpan(f.text, f.rank, f.rect) for f in frags]
# --- MagicDataReadiness Example Usage ---
if __name__ == '__main__':
print("="*60)
print(" MagicDataReadiness PDF Processor - Example Usage")
print("="*60)
# --- 1. Configuration (!!! MODIFY THESE PATHS WHEN OUTSIDE HF !!!) ---
# Directory where models are stored or will be downloaded
# IMPORTANT: Create this directory or ensure it's writable!
MDR_MODEL_DIRECTORY = "./mdr_pipeline_models"
# Path to the PDF file you want to process
# IMPORTANT: Place a PDF file here for testing!
# Create a dummy PDF if it doesn't exist for the example to run
MDR_INPUT_PDF = "example_input.pdf" # <--- CHANGE THIS
if not Path(MDR_INPUT_PDF).exists():
try:
print(f"Creating dummy PDF: {MDR_INPUT_PDF}")
doc = fitz.new_document()
page = doc.new_page()
page.insert_text((72, 72), "This is a dummy PDF for testing.")
doc.save(MDR_INPUT_PDF)
doc.close()
except Exception as e:
print(f"Warning: Could not create dummy PDF: {e}")
# Optional: Directory to save debug plots (set to None to disable)
MDR_DEBUG_DIRECTORY = "./mdr_debug_output"
# Specify device ('cuda' or 'cpu').
MDR_DEVICE = "cpu"
# Specify desired table format
MDR_TABLE_FORMAT = MDRExtractedTableFormat.MARKDOWN
# Specify pages (list of 0-based indices, or None for all)
MDR_PAGES = None # Example: [0, 1] for first two pages
# --- 2. Setup & Pre-checks ---
print(f"Model Directory: {os.path.abspath(MDR_MODEL_DIRECTORY)}")
print(f"Input PDF: {os.path.abspath(MDR_INPUT_PDF)}")
print(f"Debug Output: {os.path.abspath(MDR_DEBUG_DIRECTORY) if MDR_DEBUG_DIRECTORY else 'Disabled'}")
print(f"Target Device: {MDR_DEVICE}")
print(f"Table Format: {MDR_TABLE_FORMAT.name}")
print(f"Pages: {'All' if MDR_PAGES is None else MDR_PAGES}")
print("-" * 60)
mdr_ensure_directory(MDR_MODEL_DIRECTORY)
if MDR_DEBUG_DIRECTORY: mdr_ensure_directory(MDR_DEBUG_DIRECTORY)
if not Path(MDR_INPUT_PDF).is_file():
print(f"ERROR: Input PDF not found at '{MDR_INPUT_PDF}'. Please place a PDF file there or update the path.")
exit(1)
# --- 3. Progress Callback ---
def mdr_progress_update(completed, total):
perc = (completed / total) * 100 if total > 0 else 0
print(f" [Progress] Scanned {completed}/{total} pages ({perc:.1f}%)")
# --- 4. Initialize Processor ---
print("Initializing MagicPDFProcessor...")
init_start = time.time()
try:
mdr_processor = MagicPDFProcessor(
device=MDR_DEVICE,
model_dir_path=MDR_MODEL_DIRECTORY,
debug_dir_path=MDR_DEBUG_DIRECTORY,
extract_table_format=MDR_TABLE_FORMAT
)
print(f"Initialization took {time.time() - init_start:.2f}s")
except Exception as e:
print(f"FATAL ERROR during initialization: {e}")
import traceback
traceback.print_exc()
exit(1)
# --- 5. Process Document ---
print("\nStarting document processing...")
proc_start = time.time()
all_blocks_count = 0
processed_pages_count = 0
try:
# Use the main processing method
block_generator = mdr_processor.process_document_pages(
pdf_input=MDR_INPUT_PDF,
page_indexes=MDR_PAGES,
report_progress=mdr_progress_update
)
# Iterate through pages and blocks
for page_idx, page_blocks, page_img in block_generator:
processed_pages_count += 1
print(f"\n--- Page {page_idx + 1} Results ---")
if not page_blocks:
print(" No blocks extracted.")
continue
print(f" Extracted {len(page_blocks)} blocks:")
for block_idx, block in enumerate(page_blocks):
all_blocks_count += 1
info = f" - Block {block_idx+1}: {type(block).__name__}"
if isinstance(block, MDRTextBlock):
preview = block.texts[0].content[:70].replace('\n',' ') + "..." if block.texts else "[EMPTY]"
info += f" (Kind: {block.kind.name}, FontSz: {block.font_size:.2f}, Indent: {block.has_paragraph_indentation}, EndTouch: {block.last_line_touch_end}) | Text: '{preview}'" # Added indent/endtouch
elif isinstance(block, MDRTableBlock):
info += f" (Format: {block.format.name}, HasContent: {bool(block.content)}, FontSz: {block.font_size:.2f})"
# if block.content: print(f" Content:\n{block.content}") # Uncomment to see content
elif isinstance(block, MDRFormulaBlock):
info += f" (HasLatex: {bool(block.content)}, FontSz: {block.font_size:.2f})"
# if block.content: print(f" LaTeX: {block.content}") # Uncomment to see content
elif isinstance(block, MDRFigureBlock):
info += f" (FontSz: {block.font_size:.2f})"
print(info)
proc_time = time.time() - proc_start
print("\n" + "="*60)
print(" Processing Summary")
print(f" Total time: {proc_time:.2f} seconds")
print(f" Pages processed: {processed_pages_count}")
print(f" Total blocks extracted: {all_blocks_count}")
print("="*60)
except Exception as e:
print(f"\nFATAL ERROR during processing: {e}")
import traceback
traceback.print_exc()
exit(1) |