SnapSticker / app.py
RedBottle13's picture
Update app.py
ab3cfe3 verified
raw
history blame
22.8 kB
import gradio as gr
import cv2
import numpy as np
from PIL import Image
import dlib
import os
import math
from constants import *
MAX_EXPECTED_FACES=7
# get a list of faces in the image
def face_detecting(image):
detector = dlib.get_frontal_face_detector()
faces = detector(image, 1)
return faces
# show all the faces in rectangles in the image
def face_showing(image, faces):
for face in faces:
cv2.rectangle(image, (face.left(), face.top()), (face.right(), face.bottom()), (255, 255, 255), 2)
return image
# highlight the selected face in the image, using index to select the face
def face_selecting(image, faces, index):
face = faces[index]
cv2.rectangle(image, (face.left(), face.top()), (face.right(), face.bottom()), (255, 255, 255), 2)
return image
# get the landmarks of the face
def face_landmarking(image, face):
predictor = dlib.shape_predictor('shape_predictor_81_face_landmarks.dat')
landmarks = predictor(image, face)
return landmarks
# Function to overlay a transparent image onto another image
def overlay_transparent(background, overlay, x, y):
bg_height, bg_width = background.shape[:2]
if x >= bg_width or y >= bg_height:
return background
h, w = overlay.shape[:2]
if x + w > bg_width:
w = bg_width - x
overlay = overlay[:, :w]
if y + h > bg_height:
h = bg_height - y
overlay = overlay[:h]
if overlay.shape[2] < 4:
overlay = np.concatenate([overlay, np.ones((overlay.shape[0], overlay.shape[1], 1), dtype=overlay.dtype) * 255], axis=2)
overlay_img = overlay[..., :3]
mask = overlay[..., 3:] / 255.0
background[y:y+h, x:x+w] = (1.0 - mask) * background[y:y+h, x:x+w] + mask * overlay_img
return background
def calculate_eye_angle(landmarks, left_eye_indices, right_eye_indices):
# Calculate the center point of the left eye
left_eye_center = (
sum([landmarks.part(i).x for i in left_eye_indices]) // len(left_eye_indices),
sum([landmarks.part(i).y for i in left_eye_indices]) // len(left_eye_indices)
)
# Calculate the center point of the right eye
right_eye_center = (
sum([landmarks.part(i).x for i in right_eye_indices]) // len(right_eye_indices),
sum([landmarks.part(i).y for i in right_eye_indices]) // len(right_eye_indices)
)
# Calculate the differences in the x and y coordinates between the centers of the eyes
dx = right_eye_center[0] - left_eye_center[0]
dy = right_eye_center[1] - left_eye_center[1]
# Calculate the angle using the arctangent of the differences
angle = math.degrees(math.atan2(dy, dx))
return angle
# Function to add ear stickers
def add_ears_sticker(img_bgr, sticker_path, faces):
ears_pil = Image.open(sticker_path)
# Check the color mode and convert to RGBA
ears_rgba = ears_pil.convert('RGBA')
# Convert the ears_rgba to BGRA
r, g, b, a = ears_rgba.split()
ears_bgra = Image.merge("RGBA", (b, g, r, a))
# A copy of the original image
img_with_stickers = img_bgr.copy()
for face in faces:
landmarks = face_landmarking(img_bgr, face)
# the landmarks 68 to 80 are for the forehead
forehead = [landmarks.part(i) for i in range(68, 81)]
# The landmarks 36 to 41 are for the left eye, and 42 to 47 are for the right eye
left_eye = [landmarks.part(i) for i in range(36, 42)]
right_eye = [landmarks.part(i) for i in range(42, 48)]
# Calculate the center point between the eyes
left_eye_center = ((left_eye[0].x + left_eye[3].x) // 2, (left_eye[0].y + left_eye[3].y) // 2)
right_eye_center = ((right_eye[0].x + right_eye[3].x) // 2, (right_eye[0].y + right_eye[3].y) // 2)
# Calculate the angle of tilt
dx = right_eye_center[0] - left_eye_center[0]
dy = right_eye_center[1] - left_eye_center[1]
angle = math.degrees(math.atan2(dy, dx))
# Calculate the bounding box for the ears based on the eye landmarks
ears_width = int(abs(forehead[0].x - forehead[-1].x) * 2.1)
ears_height = int(ears_width * ears_bgra.height / ears_bgra.width)
# Resize the ears image
resized_ears_pil = ears_bgra.resize((ears_width, ears_height))
rotated_ears = resized_ears_pil.rotate(-angle, expand=True, resample=Image.BICUBIC)
# Calculate the position for the ears
y1 = min([point.y for point in forehead]) - int(0.7 * ears_height)
x1 = forehead[0].x - int(0.2 * ears_width)
# Convert PIL image to NumPy array
# ears_np = np.array(resized_ears_pil)
ears_np = np.array(rotated_ears)
# Overlay the ears on the image
img_with_stickers = overlay_transparent(img_with_stickers, ears_np, x1, y1)
return img_with_stickers
# Function to add hats stickers
def add_hats_sticker(img_bgr, sticker_path, faces):
hat_pil = Image.open(sticker_path)
# Check the color mode and convert to RGBA
hat_rgba = hat_pil.convert('RGBA')
# Convert the hat_rgba to BGRA
r, g, b, a = hat_rgba.split()
hat_bgra = Image.merge("RGBA", (b, g, r, a))
# A copy of the original image
img_with_stickers = img_bgr.copy()
for face in faces:
landmarks = face_landmarking(img_bgr, face)
# The landmarks 36 to 41 are for the left eye, and 42 to 47 are for the right eye
left_eye = [landmarks.part(i) for i in range(36, 42)]
right_eye = [landmarks.part(i) for i in range(42, 48)]
forehead = [landmarks.part(i) for i in range(68, 81)]
# Calculate the center point between the eyes
left_eye_center = ((left_eye[0].x + left_eye[3].x) // 2, (left_eye[0].y + left_eye[3].y) // 2)
right_eye_center = ((right_eye[0].x + right_eye[3].x) // 2, (right_eye[0].y + right_eye[3].y) // 2)
eye_center_x = (left_eye_center[0] + right_eye_center[0]) // 2
eye_center_y = (left_eye_center[1] + right_eye_center[1]) // 2
# Calculate the angle of tilt
dx = right_eye_center[0] - left_eye_center[0]
dy = right_eye_center[1] - left_eye_center[1]
angle = math.degrees(math.atan2(dy, dx))
# Calculate the size of the hat based on the width between the eyes
hat_width = int(abs(left_eye[0].x - right_eye[3].x) * 1.75)
hat_height = int(hat_width * hat_bgra.height / hat_bgra.width)
# Resize and rotate the hat image
resized_hat = hat_bgra.resize((hat_width, hat_height))
rotated_hat = resized_hat.rotate(-0.8*angle, expand=True, resample=Image.BICUBIC)
# Calculate the position for the hat
y1 = eye_center_y - hat_height - int(0.3 * hat_height)
# x1 = eye_center_x - (hat_width // 2) # Centering the hat on the midpoint between the eyes
# x1 = eye_center_x - (hat_width // 2) - int(0.03 * hat_width) # Moving the hat a bit further to the left
x1 = forehead[0].x - int(0.2 * hat_width)
# Convert PIL image to NumPy array
hat_np = np.array(rotated_hat)
# Overlay the hat on the image
img_with_stickers = overlay_transparent(img_with_stickers, hat_np, x1, y1)
return img_with_stickers
# Function to add glasses stickers
def add_glasses_sticker(img_bgr, sticker_path, faces):
glasses_pil = Image.open(sticker_path)
# Check the color mode and convert to RGBA
glasses_rgba = glasses_pil.convert('RGBA')
# Convert the glasses_rgba to BGRA
r, g, b, a = glasses_rgba.split()
glasses_bgra = Image.merge("RGBA", (b, g, r, a))
# A copy of the original image
img_with_stickers = img_bgr.copy()
for face in faces:
landmarks = face_landmarking(img_bgr, face)
# the landmarks 36 to 41 are for the left eye, and 42 to 47 are for the right eye
left_eye = [landmarks.part(i) for i in range(36, 42)]
right_eye = [landmarks.part(i) for i in range(42, 48)]
# Calculate the center points of the eyes
left_eye_center = (sum([p.x for p in left_eye]) // len(left_eye), sum([p.y for p in left_eye]) // len(left_eye))
right_eye_center = (sum([p.x for p in right_eye]) // len(right_eye), sum([p.y for p in right_eye]) // len(right_eye))
# Calculate the angle of tilt
dx = right_eye_center[0] - left_eye_center[0]
dy = right_eye_center[1] - left_eye_center[1]
angle = math.degrees(math.atan2(dy, dx)) # Angle in degrees
# Calculate the bounding box for the glasses based on the eye landmarks
glasses_width = int(abs(left_eye_center[0] - right_eye_center[0]) * 2)
glasses_height = int(glasses_width * glasses_bgra.height / glasses_bgra.width)
# Resize and rotate the glasses image
resized_glasses = glasses_bgra.resize((glasses_width, glasses_height))
rotated_glasses = resized_glasses.rotate(-0.8*angle, expand=True, resample=Image.BICUBIC) # Negative angle to correct orientation
# Calculate the position for the glasses, adjusting for the rotation
x1 = left_eye_center[0] - int(0.25 * glasses_width)
y1 = min(left_eye_center[1], right_eye_center[1]) - int(0.45 * glasses_height)
# Convert PIL image to NumPy array
glasses_np = np.array(rotated_glasses)
# Overlay the glasses on the image
img_with_stickers = overlay_transparent(img_with_stickers, glasses_np, x1, y1)
return img_with_stickers
def add_noses_sticker(img_bgr, sticker_path, faces):
nose_pil = Image.open(sticker_path)
# Check the color mode and convert to RGBA
nose_rgba = nose_pil.convert('RGBA')
# Convert the nose_rgba to BGRA
r, g, b, a = nose_rgba.split()
nose_bgra = Image.merge("RGBA", (b, g, r, a))
# A copy of the original image
img_with_stickers = img_bgr.copy()
for face in faces:
landmarks = face_landmarking(img_bgr, face)
# Assuming that the landmarks 27 to 35 are for the nose area
nose_area = [landmarks.part(i) for i in range(27, 36)]
# Calculate the bounding box for the nose based on the nose landmarks
nose_width = int(abs(nose_area[0].x - nose_area[-1].x) * 2.1)
nose_height = int(nose_width * nose_bgra.height / nose_bgra.width)
# the landmarks 31 and 35 are the leftmost and rightmost points of the nose area
nose_left = landmarks.part(31)
nose_right = landmarks.part(35)
# Calculate the center point of the nose
nose_center_x = (nose_left.x + nose_right.x) // 2
nose_top = landmarks.part(27) # Use 28 if it's more accurate
nose_bottom = landmarks.part(33)
# Calculate the midpoint of the vertical length of the nose
nose_center_y = (nose_top.y + nose_bottom.y) // 2
# Calculate the angle of tilt using the eyes as reference
left_eye_indices = range(36, 42)
right_eye_indices = range(42, 48)
angle = calculate_eye_angle(landmarks, left_eye_indices, right_eye_indices)
# Resize the nose image
resized_nose_pil = nose_bgra.resize((nose_width, nose_height))
rotated_nose = resized_nose_pil.rotate(-angle, expand=True, resample=Image.BICUBIC)
# the position for the nose
x1 = nose_center_x - (nose_width // 2)
y1 = nose_center_y - (nose_height // 2)+ int(0.1 * nose_height) # Adding a slight downward offset
# Convert PIL image to NumPy array
nose_np = np.array(rotated_nose)
# Overlay the nose on the image
img_with_stickers = overlay_transparent(img_with_stickers, nose_np, x1, y1)
return img_with_stickers
def add_animal_faces_sticker(img_bgr, sticker_path, faces):
animal_face_pil = Image.open(sticker_path)
# Check the color mode and convert to RGBA
animal_face_rgba = animal_face_pil.convert('RGBA')
# Convert the animal_face_rgba to BGRA
r, g, b, a = animal_face_rgba.split()
animal_face_bgra = Image.merge("RGBA", (b, g, r, a))
# A copy of the original image
img_with_stickers = img_bgr.copy()
for face in faces:
landmarks = face_landmarking(img_bgr, face)
# Find the top of the forehead using landmarks above the eyes
# Assuming landmarks 19 to 24 represent the eyebrows
forehead_top = min(landmarks.part(i).y for i in range(68, 81))
# Calculate the center point between the eyes as an anchor
left_eye = [landmarks.part(i) for i in range(36, 42)]
right_eye = [landmarks.part(i) for i in range(42, 48)]
eye_center_x = (left_eye[0].x + right_eye[3].x) // 2
eye_center_y = (left_eye[3].y + right_eye[0].y) // 2
# Calculate the size of the animal face sticker based on the width between the temples
head_width = int(abs(landmarks.part(0).x - landmarks.part(16).x)*1.4)
head_height = int(head_width * animal_face_bgra.height *1.2 / animal_face_bgra.width)
# Calculate the angle of tilt using the eyes as reference
left_eye_indices = range(36, 42)
right_eye_indices = range(42, 48)
angle = calculate_eye_angle(landmarks, left_eye_indices, right_eye_indices)
# Resize the animal face sticker
resized_animal_face = animal_face_bgra.resize((head_width, head_height))
rotated_animal_face = resized_animal_face.rotate(-angle, expand=True, resample=Image.BICUBIC)
# Calculate the position for the animal face sticker
x1 = eye_center_x - (head_width // 2)
y1 = forehead_top - int(0.18 * head_height)
# Convert PIL image to NumPy array
animal_face_np = np.array(rotated_animal_face)
# Overlay the animal face on the image
img_with_stickers = overlay_transparent(img_with_stickers, animal_face_np, x1, y1)
return img_with_stickers
# This dictionary will hold the user's sticker selections
# sticker_selections = {}
# Function to update sticker selections
def update_selections(category, selection):
sticker_selections[category] = None if selection == "None" else selection
return ""
# Function to load an example image
def load_example_image(image_path):
return gr.Image.from_file(image_path)
def resize_image(image, target_width, target_height):
# Maintain aspect ratio
original_width, original_height = image.size
ratio = min(target_width/original_width, target_height/original_height)
new_width = int(original_width * ratio)
new_height = int(original_height * ratio)
# Use Image.LANCZOS for high-quality downsampling
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
return resized_image
def get_face_crops(image_bgr, faces, target_width=500, target_height=130):
face_crops = []
for face in faces:
x, y, w, h = face.left(), face.top(), face.width(), face.height()
face_crop = image_bgr[y:y+h, x:x+w]
face_pil = Image.fromarray(cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB))
# Resize image to fit the display while maintaining aspect ratio
resized_face = resize_image(face_pil, target_width, target_height)
face_crops.append(resized_face)
return face_crops
# Function to process uploaded images and display face crops
def process_and_show_faces(image_input):
# Convert PIL image to OpenCV format BGR
image_bgr = cv2.cvtColor(np.array(image_input), cv2.COLOR_RGB2BGR)
# Detect faces
faces = face_detecting(image_bgr)
# Get individual face crops
face_crops = get_face_crops(image_bgr, faces)
# Return face crops to display them in the interface
return face_crops
face_outputs = []
for i in range(MAX_EXPECTED_FACES):
face_output = gr.Image(label=f"Face {i+1}")
face_outputs.append(face_output)
# This list will hold the Checkbox components for each face
checkboxes = []
def process_selected_faces(image_input, selected_face_indices):
# Convert PIL image to OpenCV format BGR
image_bgr = cv2.cvtColor(np.array(image_input), cv2.COLOR_RGB2BGR)
# Detect all faces
all_faces = face_detecting(image_bgr)
# Filter faces to get only those selected
faces = [all_faces[i] for i in selected_face_indices]
img_with_stickers = image_bgr.copy()
for category, sticker_name in sticker_selections.items():
if sticker_name: # Check if a sticker was selected in this category
# the sticker file path
if sticker_name != 'None':
sticker_path = os.path.join('stickers', category, sticker_name + '.png')
# Apply the selected sticker based on its category
if category == 'ears':
img_with_stickers = add_ears_sticker(img_with_stickers, sticker_path, faces)
elif category == 'glasses':
img_with_stickers = add_glasses_sticker(img_with_stickers, sticker_path, faces)
elif category == 'noses':
img_with_stickers = add_noses_sticker(img_with_stickers, sticker_path, faces)
elif category == 'headbands':
img_with_stickers = add_hats_sticker(img_with_stickers, sticker_path, faces)
elif category == 'hats':
img_with_stickers = add_hats_sticker(img_with_stickers, sticker_path, faces)
elif category == 'animal face':
img_with_stickers = add_animal_faces_sticker(img_with_stickers, sticker_path, faces)
else:
img_with_stickers = img_with_stickers
# Convert back to PIL image
img_with_stickers_pil = Image.fromarray(cv2.cvtColor(img_with_stickers, cv2.COLOR_BGR2RGB))
print("Selected stickers:")
for category, selection in sticker_selections.items():
print(f"{category}: {selection}")
return img_with_stickers_pil
def handle_face_selection(image_input, *checkbox_states):
selected_face_indices = [i for i, checked in enumerate(checkbox_states) if checked]
print("selected_face_indices:",selected_face_indices)
return process_selected_faces(image_input, selected_face_indices)
def update_interface_with_faces(image_input):
image_bgr = cv2.cvtColor(np.array(image_input), cv2.COLOR_RGB2BGR)
faces = face_detecting(image_bgr)
face_crops = get_face_crops(image_bgr, faces)
return [(face, f"Face {i+1}") for i, face in enumerate(face_crops)]
def detect_and_display_faces(image_input):
image_bgr = cv2.cvtColor(np.array(image_input), cv2.COLOR_RGB2BGR)
faces = face_detecting(image_bgr)
face_crops = get_face_crops(image_bgr, faces)
if not face_crops:
# Return empty images and unchecked boxes if no faces are detected
return [None] * MAX_EXPECTED_FACES + [False] * MAX_EXPECTED_FACES
# Return face crops and True for each checkbox to indicate they should be checked
# Pad the list with None and False if fewer faces than MAX_EXPECTED_FACES are detected
output = face_crops + [None] * (MAX_EXPECTED_FACES - len(face_crops))
output += [True] * len(face_crops) + [False] * (MAX_EXPECTED_FACES - len(face_crops))
return output
css = """
#category {
padding-left: 100px;
font-size: 20px;
font-weight: bold;
margin-top: 20px;
}
#sticker {
height: 130px;
width: 30px;
padding: 10px;
}
.radio {
display: flex;
justify-content: space-around;
}
"""
def handle_image_upload(image):
global sticker_selections
sticker_selections = {category: "None" for category in STICKER_PATHS.keys()}
print("reset sticker_selections called") # Reset selections when a new image is loaded
# Print out the sticker selections state for each category
for category, selection in sticker_selections.items():
print(f"{category}: {selection}")
return image
# Initialize the sticker selections dictionary
def initialize_sticker_selections():
return {
'hats': None,
'animal face': None,
'ears': None,
'glasses': None,
'noses': None,
'headbands': None
}
sticker_selections = initialize_sticker_selections()
radio_components = {}
# Create the Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Original Image")
image_input.change(
handle_image_upload,
inputs=[image_input],
outputs=[image_input]
)
with gr.Column():
output_image = gr.Image(label="Image with Stickers")
# Prepare the checkboxes and image placeholders
detect_faces_btn = gr.Button("Detect Faces")
with gr.Row():
face_checkboxes = [gr.Checkbox(label=f"Face {i+1}") for i in range(7)]
with gr.Row():
face_images = [gr.Image(height=150, width=100, min_width=30, interactive=False, show_download_button=False) for i in range(7)]
detect_faces_btn.click(
detect_and_display_faces,
inputs=[image_input],
outputs=face_images + face_checkboxes
)
process_button = gr.Button("Apply Stickers To Selected Faces")
process_button.click(
handle_face_selection,
# inputs=[image_input, face_checkboxes, sticker_selections],
inputs=[image_input] + face_checkboxes,
outputs=output_image
)
# Iterate over each category to create a row for the category
for category, stickers in STICKER_PATHS.items():
with gr.Row():
with gr.Column(scale=1, elem_id="category_row"):
gr.Markdown(f"## {category}", elem_id="category")
with gr.Column(scale=10):
# Iterate over stickers in sets of 10
for i in range(0, len(stickers), 10):
with gr.Row():
for sticker_path in stickers[i:i+10]:
gr.Image(value=sticker_path, min_width=50, interactive=False, show_download_button=False, container=False, elem_id="sticker")
with gr.Row():
# radio = gr.Radio(label=' ', choices=[stickers[i].split('/')[-1].replace('.png', '') for i in range(len(stickers))], container=False, min_width=50)
choices = [sticker.split('/')[-1].replace('.png', '') for sticker in stickers]
radio = gr.Radio(label='', choices=choices, value="None", container=False, min_width=50, elem_classes="radio")
radio.change(lambda selection, cat=category: update_selections(cat, selection), inputs=[radio], outputs=[])
radio_components[category] = radio # Store the radio component
demo.launch(share=True)