Spaces:
Sleeping
Sleeping
File size: 22,819 Bytes
5326e84 44b24c9 5326e84 44b24c9 5326e84 44b24c9 5326e84 44b24c9 5326e84 44b24c9 5326e84 44b24c9 5326e84 44b24c9 5326e84 ab3cfe3 5326e84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
import gradio as gr
import cv2
import numpy as np
from PIL import Image
import dlib
import os
import math
from constants import *
MAX_EXPECTED_FACES=7
# get a list of faces in the image
def face_detecting(image):
detector = dlib.get_frontal_face_detector()
faces = detector(image, 1)
return faces
# show all the faces in rectangles in the image
def face_showing(image, faces):
for face in faces:
cv2.rectangle(image, (face.left(), face.top()), (face.right(), face.bottom()), (255, 255, 255), 2)
return image
# highlight the selected face in the image, using index to select the face
def face_selecting(image, faces, index):
face = faces[index]
cv2.rectangle(image, (face.left(), face.top()), (face.right(), face.bottom()), (255, 255, 255), 2)
return image
# get the landmarks of the face
def face_landmarking(image, face):
predictor = dlib.shape_predictor('shape_predictor_81_face_landmarks.dat')
landmarks = predictor(image, face)
return landmarks
# Function to overlay a transparent image onto another image
def overlay_transparent(background, overlay, x, y):
bg_height, bg_width = background.shape[:2]
if x >= bg_width or y >= bg_height:
return background
h, w = overlay.shape[:2]
if x + w > bg_width:
w = bg_width - x
overlay = overlay[:, :w]
if y + h > bg_height:
h = bg_height - y
overlay = overlay[:h]
if overlay.shape[2] < 4:
overlay = np.concatenate([overlay, np.ones((overlay.shape[0], overlay.shape[1], 1), dtype=overlay.dtype) * 255], axis=2)
overlay_img = overlay[..., :3]
mask = overlay[..., 3:] / 255.0
background[y:y+h, x:x+w] = (1.0 - mask) * background[y:y+h, x:x+w] + mask * overlay_img
return background
def calculate_eye_angle(landmarks, left_eye_indices, right_eye_indices):
# Calculate the center point of the left eye
left_eye_center = (
sum([landmarks.part(i).x for i in left_eye_indices]) // len(left_eye_indices),
sum([landmarks.part(i).y for i in left_eye_indices]) // len(left_eye_indices)
)
# Calculate the center point of the right eye
right_eye_center = (
sum([landmarks.part(i).x for i in right_eye_indices]) // len(right_eye_indices),
sum([landmarks.part(i).y for i in right_eye_indices]) // len(right_eye_indices)
)
# Calculate the differences in the x and y coordinates between the centers of the eyes
dx = right_eye_center[0] - left_eye_center[0]
dy = right_eye_center[1] - left_eye_center[1]
# Calculate the angle using the arctangent of the differences
angle = math.degrees(math.atan2(dy, dx))
return angle
# Function to add ear stickers
def add_ears_sticker(img_bgr, sticker_path, faces):
ears_pil = Image.open(sticker_path)
# Check the color mode and convert to RGBA
ears_rgba = ears_pil.convert('RGBA')
# Convert the ears_rgba to BGRA
r, g, b, a = ears_rgba.split()
ears_bgra = Image.merge("RGBA", (b, g, r, a))
# A copy of the original image
img_with_stickers = img_bgr.copy()
for face in faces:
landmarks = face_landmarking(img_bgr, face)
# the landmarks 68 to 80 are for the forehead
forehead = [landmarks.part(i) for i in range(68, 81)]
# The landmarks 36 to 41 are for the left eye, and 42 to 47 are for the right eye
left_eye = [landmarks.part(i) for i in range(36, 42)]
right_eye = [landmarks.part(i) for i in range(42, 48)]
# Calculate the center point between the eyes
left_eye_center = ((left_eye[0].x + left_eye[3].x) // 2, (left_eye[0].y + left_eye[3].y) // 2)
right_eye_center = ((right_eye[0].x + right_eye[3].x) // 2, (right_eye[0].y + right_eye[3].y) // 2)
# Calculate the angle of tilt
dx = right_eye_center[0] - left_eye_center[0]
dy = right_eye_center[1] - left_eye_center[1]
angle = math.degrees(math.atan2(dy, dx))
# Calculate the bounding box for the ears based on the eye landmarks
ears_width = int(abs(forehead[0].x - forehead[-1].x) * 2.1)
ears_height = int(ears_width * ears_bgra.height / ears_bgra.width)
# Resize the ears image
resized_ears_pil = ears_bgra.resize((ears_width, ears_height))
rotated_ears = resized_ears_pil.rotate(-angle, expand=True, resample=Image.BICUBIC)
# Calculate the position for the ears
y1 = min([point.y for point in forehead]) - int(0.7 * ears_height)
x1 = forehead[0].x - int(0.2 * ears_width)
# Convert PIL image to NumPy array
# ears_np = np.array(resized_ears_pil)
ears_np = np.array(rotated_ears)
# Overlay the ears on the image
img_with_stickers = overlay_transparent(img_with_stickers, ears_np, x1, y1)
return img_with_stickers
# Function to add hats stickers
def add_hats_sticker(img_bgr, sticker_path, faces):
hat_pil = Image.open(sticker_path)
# Check the color mode and convert to RGBA
hat_rgba = hat_pil.convert('RGBA')
# Convert the hat_rgba to BGRA
r, g, b, a = hat_rgba.split()
hat_bgra = Image.merge("RGBA", (b, g, r, a))
# A copy of the original image
img_with_stickers = img_bgr.copy()
for face in faces:
landmarks = face_landmarking(img_bgr, face)
# The landmarks 36 to 41 are for the left eye, and 42 to 47 are for the right eye
left_eye = [landmarks.part(i) for i in range(36, 42)]
right_eye = [landmarks.part(i) for i in range(42, 48)]
forehead = [landmarks.part(i) for i in range(68, 81)]
# Calculate the center point between the eyes
left_eye_center = ((left_eye[0].x + left_eye[3].x) // 2, (left_eye[0].y + left_eye[3].y) // 2)
right_eye_center = ((right_eye[0].x + right_eye[3].x) // 2, (right_eye[0].y + right_eye[3].y) // 2)
eye_center_x = (left_eye_center[0] + right_eye_center[0]) // 2
eye_center_y = (left_eye_center[1] + right_eye_center[1]) // 2
# Calculate the angle of tilt
dx = right_eye_center[0] - left_eye_center[0]
dy = right_eye_center[1] - left_eye_center[1]
angle = math.degrees(math.atan2(dy, dx))
# Calculate the size of the hat based on the width between the eyes
hat_width = int(abs(left_eye[0].x - right_eye[3].x) * 1.75)
hat_height = int(hat_width * hat_bgra.height / hat_bgra.width)
# Resize and rotate the hat image
resized_hat = hat_bgra.resize((hat_width, hat_height))
rotated_hat = resized_hat.rotate(-0.8*angle, expand=True, resample=Image.BICUBIC)
# Calculate the position for the hat
y1 = eye_center_y - hat_height - int(0.3 * hat_height)
# x1 = eye_center_x - (hat_width // 2) # Centering the hat on the midpoint between the eyes
# x1 = eye_center_x - (hat_width // 2) - int(0.03 * hat_width) # Moving the hat a bit further to the left
x1 = forehead[0].x - int(0.2 * hat_width)
# Convert PIL image to NumPy array
hat_np = np.array(rotated_hat)
# Overlay the hat on the image
img_with_stickers = overlay_transparent(img_with_stickers, hat_np, x1, y1)
return img_with_stickers
# Function to add glasses stickers
def add_glasses_sticker(img_bgr, sticker_path, faces):
glasses_pil = Image.open(sticker_path)
# Check the color mode and convert to RGBA
glasses_rgba = glasses_pil.convert('RGBA')
# Convert the glasses_rgba to BGRA
r, g, b, a = glasses_rgba.split()
glasses_bgra = Image.merge("RGBA", (b, g, r, a))
# A copy of the original image
img_with_stickers = img_bgr.copy()
for face in faces:
landmarks = face_landmarking(img_bgr, face)
# the landmarks 36 to 41 are for the left eye, and 42 to 47 are for the right eye
left_eye = [landmarks.part(i) for i in range(36, 42)]
right_eye = [landmarks.part(i) for i in range(42, 48)]
# Calculate the center points of the eyes
left_eye_center = (sum([p.x for p in left_eye]) // len(left_eye), sum([p.y for p in left_eye]) // len(left_eye))
right_eye_center = (sum([p.x for p in right_eye]) // len(right_eye), sum([p.y for p in right_eye]) // len(right_eye))
# Calculate the angle of tilt
dx = right_eye_center[0] - left_eye_center[0]
dy = right_eye_center[1] - left_eye_center[1]
angle = math.degrees(math.atan2(dy, dx)) # Angle in degrees
# Calculate the bounding box for the glasses based on the eye landmarks
glasses_width = int(abs(left_eye_center[0] - right_eye_center[0]) * 2)
glasses_height = int(glasses_width * glasses_bgra.height / glasses_bgra.width)
# Resize and rotate the glasses image
resized_glasses = glasses_bgra.resize((glasses_width, glasses_height))
rotated_glasses = resized_glasses.rotate(-0.8*angle, expand=True, resample=Image.BICUBIC) # Negative angle to correct orientation
# Calculate the position for the glasses, adjusting for the rotation
x1 = left_eye_center[0] - int(0.25 * glasses_width)
y1 = min(left_eye_center[1], right_eye_center[1]) - int(0.45 * glasses_height)
# Convert PIL image to NumPy array
glasses_np = np.array(rotated_glasses)
# Overlay the glasses on the image
img_with_stickers = overlay_transparent(img_with_stickers, glasses_np, x1, y1)
return img_with_stickers
def add_noses_sticker(img_bgr, sticker_path, faces):
nose_pil = Image.open(sticker_path)
# Check the color mode and convert to RGBA
nose_rgba = nose_pil.convert('RGBA')
# Convert the nose_rgba to BGRA
r, g, b, a = nose_rgba.split()
nose_bgra = Image.merge("RGBA", (b, g, r, a))
# A copy of the original image
img_with_stickers = img_bgr.copy()
for face in faces:
landmarks = face_landmarking(img_bgr, face)
# Assuming that the landmarks 27 to 35 are for the nose area
nose_area = [landmarks.part(i) for i in range(27, 36)]
# Calculate the bounding box for the nose based on the nose landmarks
nose_width = int(abs(nose_area[0].x - nose_area[-1].x) * 2.1)
nose_height = int(nose_width * nose_bgra.height / nose_bgra.width)
# the landmarks 31 and 35 are the leftmost and rightmost points of the nose area
nose_left = landmarks.part(31)
nose_right = landmarks.part(35)
# Calculate the center point of the nose
nose_center_x = (nose_left.x + nose_right.x) // 2
nose_top = landmarks.part(27) # Use 28 if it's more accurate
nose_bottom = landmarks.part(33)
# Calculate the midpoint of the vertical length of the nose
nose_center_y = (nose_top.y + nose_bottom.y) // 2
# Calculate the angle of tilt using the eyes as reference
left_eye_indices = range(36, 42)
right_eye_indices = range(42, 48)
angle = calculate_eye_angle(landmarks, left_eye_indices, right_eye_indices)
# Resize the nose image
resized_nose_pil = nose_bgra.resize((nose_width, nose_height))
rotated_nose = resized_nose_pil.rotate(-angle, expand=True, resample=Image.BICUBIC)
# the position for the nose
x1 = nose_center_x - (nose_width // 2)
y1 = nose_center_y - (nose_height // 2)+ int(0.1 * nose_height) # Adding a slight downward offset
# Convert PIL image to NumPy array
nose_np = np.array(rotated_nose)
# Overlay the nose on the image
img_with_stickers = overlay_transparent(img_with_stickers, nose_np, x1, y1)
return img_with_stickers
def add_animal_faces_sticker(img_bgr, sticker_path, faces):
animal_face_pil = Image.open(sticker_path)
# Check the color mode and convert to RGBA
animal_face_rgba = animal_face_pil.convert('RGBA')
# Convert the animal_face_rgba to BGRA
r, g, b, a = animal_face_rgba.split()
animal_face_bgra = Image.merge("RGBA", (b, g, r, a))
# A copy of the original image
img_with_stickers = img_bgr.copy()
for face in faces:
landmarks = face_landmarking(img_bgr, face)
# Find the top of the forehead using landmarks above the eyes
# Assuming landmarks 19 to 24 represent the eyebrows
forehead_top = min(landmarks.part(i).y for i in range(68, 81))
# Calculate the center point between the eyes as an anchor
left_eye = [landmarks.part(i) for i in range(36, 42)]
right_eye = [landmarks.part(i) for i in range(42, 48)]
eye_center_x = (left_eye[0].x + right_eye[3].x) // 2
eye_center_y = (left_eye[3].y + right_eye[0].y) // 2
# Calculate the size of the animal face sticker based on the width between the temples
head_width = int(abs(landmarks.part(0).x - landmarks.part(16).x)*1.4)
head_height = int(head_width * animal_face_bgra.height *1.2 / animal_face_bgra.width)
# Calculate the angle of tilt using the eyes as reference
left_eye_indices = range(36, 42)
right_eye_indices = range(42, 48)
angle = calculate_eye_angle(landmarks, left_eye_indices, right_eye_indices)
# Resize the animal face sticker
resized_animal_face = animal_face_bgra.resize((head_width, head_height))
rotated_animal_face = resized_animal_face.rotate(-angle, expand=True, resample=Image.BICUBIC)
# Calculate the position for the animal face sticker
x1 = eye_center_x - (head_width // 2)
y1 = forehead_top - int(0.18 * head_height)
# Convert PIL image to NumPy array
animal_face_np = np.array(rotated_animal_face)
# Overlay the animal face on the image
img_with_stickers = overlay_transparent(img_with_stickers, animal_face_np, x1, y1)
return img_with_stickers
# This dictionary will hold the user's sticker selections
# sticker_selections = {}
# Function to update sticker selections
def update_selections(category, selection):
sticker_selections[category] = None if selection == "None" else selection
return ""
# Function to load an example image
def load_example_image(image_path):
return gr.Image.from_file(image_path)
def resize_image(image, target_width, target_height):
# Maintain aspect ratio
original_width, original_height = image.size
ratio = min(target_width/original_width, target_height/original_height)
new_width = int(original_width * ratio)
new_height = int(original_height * ratio)
# Use Image.LANCZOS for high-quality downsampling
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
return resized_image
def get_face_crops(image_bgr, faces, target_width=500, target_height=130):
face_crops = []
for face in faces:
x, y, w, h = face.left(), face.top(), face.width(), face.height()
face_crop = image_bgr[y:y+h, x:x+w]
face_pil = Image.fromarray(cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB))
# Resize image to fit the display while maintaining aspect ratio
resized_face = resize_image(face_pil, target_width, target_height)
face_crops.append(resized_face)
return face_crops
# Function to process uploaded images and display face crops
def process_and_show_faces(image_input):
# Convert PIL image to OpenCV format BGR
image_bgr = cv2.cvtColor(np.array(image_input), cv2.COLOR_RGB2BGR)
# Detect faces
faces = face_detecting(image_bgr)
# Get individual face crops
face_crops = get_face_crops(image_bgr, faces)
# Return face crops to display them in the interface
return face_crops
face_outputs = []
for i in range(MAX_EXPECTED_FACES):
face_output = gr.Image(label=f"Face {i+1}")
face_outputs.append(face_output)
# This list will hold the Checkbox components for each face
checkboxes = []
def process_selected_faces(image_input, selected_face_indices):
# Convert PIL image to OpenCV format BGR
image_bgr = cv2.cvtColor(np.array(image_input), cv2.COLOR_RGB2BGR)
# Detect all faces
all_faces = face_detecting(image_bgr)
# Filter faces to get only those selected
faces = [all_faces[i] for i in selected_face_indices]
img_with_stickers = image_bgr.copy()
for category, sticker_name in sticker_selections.items():
if sticker_name: # Check if a sticker was selected in this category
# the sticker file path
if sticker_name != 'None':
sticker_path = os.path.join('stickers', category, sticker_name + '.png')
# Apply the selected sticker based on its category
if category == 'ears':
img_with_stickers = add_ears_sticker(img_with_stickers, sticker_path, faces)
elif category == 'glasses':
img_with_stickers = add_glasses_sticker(img_with_stickers, sticker_path, faces)
elif category == 'noses':
img_with_stickers = add_noses_sticker(img_with_stickers, sticker_path, faces)
elif category == 'headbands':
img_with_stickers = add_hats_sticker(img_with_stickers, sticker_path, faces)
elif category == 'hats':
img_with_stickers = add_hats_sticker(img_with_stickers, sticker_path, faces)
elif category == 'animal face':
img_with_stickers = add_animal_faces_sticker(img_with_stickers, sticker_path, faces)
else:
img_with_stickers = img_with_stickers
# Convert back to PIL image
img_with_stickers_pil = Image.fromarray(cv2.cvtColor(img_with_stickers, cv2.COLOR_BGR2RGB))
print("Selected stickers:")
for category, selection in sticker_selections.items():
print(f"{category}: {selection}")
return img_with_stickers_pil
def handle_face_selection(image_input, *checkbox_states):
selected_face_indices = [i for i, checked in enumerate(checkbox_states) if checked]
print("selected_face_indices:",selected_face_indices)
return process_selected_faces(image_input, selected_face_indices)
def update_interface_with_faces(image_input):
image_bgr = cv2.cvtColor(np.array(image_input), cv2.COLOR_RGB2BGR)
faces = face_detecting(image_bgr)
face_crops = get_face_crops(image_bgr, faces)
return [(face, f"Face {i+1}") for i, face in enumerate(face_crops)]
def detect_and_display_faces(image_input):
image_bgr = cv2.cvtColor(np.array(image_input), cv2.COLOR_RGB2BGR)
faces = face_detecting(image_bgr)
face_crops = get_face_crops(image_bgr, faces)
if not face_crops:
# Return empty images and unchecked boxes if no faces are detected
return [None] * MAX_EXPECTED_FACES + [False] * MAX_EXPECTED_FACES
# Return face crops and True for each checkbox to indicate they should be checked
# Pad the list with None and False if fewer faces than MAX_EXPECTED_FACES are detected
output = face_crops + [None] * (MAX_EXPECTED_FACES - len(face_crops))
output += [True] * len(face_crops) + [False] * (MAX_EXPECTED_FACES - len(face_crops))
return output
css = """
#category {
padding-left: 100px;
font-size: 20px;
font-weight: bold;
margin-top: 20px;
}
#sticker {
height: 130px;
width: 30px;
padding: 10px;
}
.radio {
display: flex;
justify-content: space-around;
}
"""
def handle_image_upload(image):
global sticker_selections
sticker_selections = {category: "None" for category in STICKER_PATHS.keys()}
print("reset sticker_selections called") # Reset selections when a new image is loaded
# Print out the sticker selections state for each category
for category, selection in sticker_selections.items():
print(f"{category}: {selection}")
return image
# Initialize the sticker selections dictionary
def initialize_sticker_selections():
return {
'hats': None,
'animal face': None,
'ears': None,
'glasses': None,
'noses': None,
'headbands': None
}
sticker_selections = initialize_sticker_selections()
radio_components = {}
# Create the Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Original Image")
image_input.change(
handle_image_upload,
inputs=[image_input],
outputs=[image_input]
)
with gr.Column():
output_image = gr.Image(label="Image with Stickers")
# Prepare the checkboxes and image placeholders
detect_faces_btn = gr.Button("Detect Faces")
with gr.Row():
face_checkboxes = [gr.Checkbox(label=f"Face {i+1}") for i in range(7)]
with gr.Row():
face_images = [gr.Image(height=150, width=100, min_width=30, interactive=False, show_download_button=False) for i in range(7)]
detect_faces_btn.click(
detect_and_display_faces,
inputs=[image_input],
outputs=face_images + face_checkboxes
)
process_button = gr.Button("Apply Stickers To Selected Faces")
process_button.click(
handle_face_selection,
# inputs=[image_input, face_checkboxes, sticker_selections],
inputs=[image_input] + face_checkboxes,
outputs=output_image
)
# Iterate over each category to create a row for the category
for category, stickers in STICKER_PATHS.items():
with gr.Row():
with gr.Column(scale=1, elem_id="category_row"):
gr.Markdown(f"## {category}", elem_id="category")
with gr.Column(scale=10):
# Iterate over stickers in sets of 10
for i in range(0, len(stickers), 10):
with gr.Row():
for sticker_path in stickers[i:i+10]:
gr.Image(value=sticker_path, min_width=50, interactive=False, show_download_button=False, container=False, elem_id="sticker")
with gr.Row():
# radio = gr.Radio(label=' ', choices=[stickers[i].split('/')[-1].replace('.png', '') for i in range(len(stickers))], container=False, min_width=50)
choices = [sticker.split('/')[-1].replace('.png', '') for sticker in stickers]
radio = gr.Radio(label='', choices=choices, value="None", container=False, min_width=50, elem_classes="radio")
radio.change(lambda selection, cat=category: update_selections(cat, selection), inputs=[radio], outputs=[])
radio_components[category] = radio # Store the radio component
demo.launch(share=True)
|