File size: 2,183 Bytes
81452bc
 
 
412e767
 
8bba6a1
 
412e767
 
 
 
8bba6a1
412e767
 
81452bc
 
 
412e767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81452bc
 
412e767
 
 
 
 
 
 
 
 
 
 
81452bc
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import pydicom
import numpy as np
from PIL import Image
from transformers import AutoModelForVision2Seq, AutoProcessor
import torch

# Load the model and processor
model_id = "MONAI/Llama3-VILA-M3-3B"
model = AutoModelForVision2Seq.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
processor = AutoProcessor.from_pretrained(model_id)

def dicom_to_image(files):
    # Read all DICOM files and sort by InstanceNumber if available
    slices = []
    for file in files:
        ds = pydicom.dcmread(file.name)
        slices.append((ds, ds.get('InstanceNumber', 0)))
    slices.sort(key=lambda x: x[1])
    images = [s[0].pixel_array for s in slices]
    # If multiple slices, take the middle one
    img = images[len(images)//2] if len(images) > 1 else images[0]
    # Normalize and convert to 8-bit
    img = img.astype(np.float32)
    img = (img - img.min()) / (img.max() - img.min() + 1e-5) * 255
    img = img.astype(np.uint8)
    pil_img = Image.fromarray(img)
    return pil_img

def interpret(files, prompt):
    pil_img = dicom_to_image(files)
    # Prepare input for the model
    inputs = processor(images=pil_img, text=prompt, return_tensors="pt")
    # Move to GPU if available
    if torch.cuda.is_available():
        model.to("cuda")
        for k in inputs:
            inputs[k] = inputs[k].to("cuda")
    # Generate report
    output = model.generate(**inputs, max_new_tokens=256)
    report = processor.decode(output[0], skip_special_tokens=True)
    return pil_img, report

iface = gr.Interface(
    fn=interpret,
    inputs=[
        gr.File(file_count="multiple", label="Upload DICOM files"),
        gr.Textbox(label="Prompt", value="Describe the findings in this image.")
    ],
    outputs=[
        gr.Image(type="pil", label="Selected Image"),
        gr.Textbox(label="AI-generated Report")
    ],
    title="Radiology Image Interpretation (VILA-M3-3B)",
    description="Upload DICOM files (CT, MRI, or X-ray). The app will select the middle slice (for stacks), send it to MONAI/Llama3-VILA-M3-3B, and display the AI-generated report."
)

if __name__ == "__main__":
    iface.launch()