Rajeev-Isaac commited on
Commit
e7d47b3
·
verified ·
1 Parent(s): c0ff21a

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +65 -38
src/streamlit_app.py CHANGED
@@ -1,40 +1,67 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
1
+ # File: streamlit_dashboard.py
 
 
2
  import streamlit as st
3
+ import requests
4
+ import pandas as pd
5
+ import plotly.express as px
6
+
7
+ BASE_URL = "https://splashdatavisualize-production.up.railway.app/api/visualizations"
8
+
9
+ st.title("📊 Sales Visualization Dashboard")
10
+ st.markdown("Use the sidebar to choose a visualization.")
11
+
12
+ chart_type = st.sidebar.selectbox("Select a Chart", [
13
+ "Sales by Country",
14
+ "Sales by Category",
15
+ "Share by Country",
16
+ "Share by Category",
17
+ "Geo Sales",
18
+ "Grouped Country & Category",
19
+ "Stacked Country & Category"
20
+ ])
21
+
22
+ # 1. Sales by Country
23
+ if chart_type == "Sales by Country":
24
+ data = requests.get(f"{BASE_URL}/sales-by-country").json()
25
+ df = pd.DataFrame(data.items(), columns=["Country", "Sales"])
26
+ st.plotly_chart(px.bar(df, x="Country", y="Sales", title="Sales by Country"))
27
+
28
+ # 2. Sales by Category
29
+ elif chart_type == "Sales by Category":
30
+ data = requests.get(f"{BASE_URL}/sales-by-category").json()
31
+ df = pd.DataFrame(data.items(), columns=["Category", "Sales"])
32
+ st.plotly_chart(px.bar(df, x="Category", y="Sales", title="Sales by Category"))
33
+
34
+ # 3. Share by Country (Pie Chart)
35
+ elif chart_type == "Share by Country":
36
+ data = requests.get(f"{BASE_URL}/share-by-country").json()
37
+ df = pd.DataFrame(data.items(), columns=["Country", "Share %"])
38
+ st.plotly_chart(px.pie(df, names="Country", values="Share %", title="Share by Country"))
39
+
40
+ # 4. Share by Category (Pie Chart)
41
+ elif chart_type == "Share by Category":
42
+ data = requests.get(f"{BASE_URL}/share-by-category").json()
43
+ df = pd.DataFrame(data.items(), columns=["Category", "Share %"])
44
+ st.plotly_chart(px.pie(df, names="Category", values="Share %", title="Share by Category"))
45
+
46
+ # 5. Geo Sales
47
+ elif chart_type == "Geo Sales":
48
+ data = requests.get(f"{BASE_URL}/geo-sales").json()
49
+ df = pd.DataFrame(data)
50
+ st.plotly_chart(px.choropleth(df, locations="country", locationmode="country names",
51
+ color="value", title="Geo Sales by Country", color_continuous_scale="Blues"))
52
+
53
+ # 6. Grouped Country & Category
54
+ elif chart_type == "Grouped Country & Category":
55
+ data = requests.get(f"{BASE_URL}/grouped-country-category").json()
56
+ df = pd.DataFrame(data).T.reset_index().rename(columns={"index": "Country"})
57
+ df = df.melt(id_vars="Country", var_name="Category", value_name="Sales")
58
+ st.plotly_chart(px.bar(df, x="Country", y="Sales", color="Category", barmode="group",
59
+ title="Grouped Sales by Country and Category"))
60
 
61
+ # 7. Stacked Country & Category
62
+ elif chart_type == "Stacked Country & Category":
63
+ data = requests.get(f"{BASE_URL}/stacked-country-category").json()
64
+ df = pd.DataFrame(data)
65
+ df = df.melt(id_vars="country", var_name="Category", value_name="Sales")
66
+ st.plotly_chart(px.bar(df, x="country", y="Sales", color="Category", barmode="stack",
67
+ title="Stacked Sales by Country and Category"))