Raiff1982 commited on
Commit
493d5e8
·
verified ·
1 Parent(s): 3b4c377

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -63
app.py CHANGED
@@ -1,64 +1,50 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This is a Gradio app that simulates the functionality of the provided Tkinter application.
2
+ # It includes a text input, a voice input button, and a response area to display the AI's response.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
+ import gradio as gr
5
+ import asyncio
6
+ from ai_system.ai_core import AICore
7
+ import speech_recognition as sr
8
+
9
+ # Initialize the AI core
10
+ ai = AICore()
11
+
12
+ # Function to process the query and get the AI response
13
+ async def process_query(query):
14
+ result = await ai.generate_response(query, 1)
15
+ return result['response']
16
+
17
+ # Function to handle the text input submission
18
+ def submit_query(query):
19
+ if not query:
20
+ return ""
21
+ response = asyncio.run(process_query(query))
22
+ return f"Response: {response}"
23
+
24
+ # Function to handle voice input
25
+ def listen_voice_command():
26
+ recognizer = sr.Recognizer()
27
+ with sr.Microphone() as source:
28
+ print("Listening for voice command...")
29
+ audio = recognizer.listen(source)
30
+ try:
31
+ command = recognizer.recognize_google(audio)
32
+ return command
33
+ except sr.UnknownValueError:
34
+ return "Voice command not recognized."
35
+ except sr.RequestError:
36
+ return "Could not request results; check your network connection."
37
+
38
+ # Create the Gradio interface
39
+ with gr.Blocks() as demo:
40
+ query_entry = gr.Textbox(label="Enter your query")
41
+ response_area = gr.Textbox(label="Response")
42
+ submit_button = gr.Button("Submit")
43
+ voice_button = gr.Button("Voice Input")
44
+
45
+ # Set up the event listeners
46
+ submit_button.click(submit_query, inputs=query_entry, outputs=response_area)
47
+ voice_button.click(listen_voice_command, outputs=query_entry)
48
+
49
+ # Launch the Gradio app
50
+ demo.launch(show_error=True)