import numpy as np import networkx as nx import random from typing import Dict, Any class QuantumSpiderweb: """ Simulates a cognitive spiderweb architecture with dimensions: Ψ (thought), τ (time), χ (speed), Φ (emotion), λ (space) """ def __init__(self, node_count: int = 128): self.graph = nx.Graph() self.dimensions = ['Ψ', 'τ', 'χ', 'Φ', 'λ'] self._init_nodes(node_count) self.entangled_state = {} def _init_nodes(self, count: int): for i in range(count): node_id = f"QNode_{i}" state = self._generate_state() self.graph.add_node(node_id, state=state) if i > 0: connection = f"QNode_{random.randint(0, i-1)}" self.graph.add_edge(node_id, connection, weight=random.random()) def _generate_state(self) -> Dict[str, float]: return {dim: np.random.uniform(-1.0, 1.0) for dim in self.dimensions} def propagate_thought(self, origin: str, depth: int = 3): """ Traverse the graph from a starting node, simulating pre-cognitive waveform """ visited = set() stack = [(origin, 0)] traversal_output = [] while stack: node, level = stack.pop() if node in visited or level > depth: continue visited.add(node) state = self.graph.nodes[node]['state'] traversal_output.append((node, state)) for neighbor in self.graph.neighbors(node): stack.append((neighbor, level + 1)) return traversal_output def detect_tension(self, node: str) -> float: """ Measures tension (instability) in the node's quantum state """ state = self.graph.nodes[node]['state'] return np.std(list(state.values())) def collapse_node(self, node: str) -> Dict[str, Any]: """ Collapse superposed thought into deterministic response """ state = self.graph.nodes[node]['state'] collapsed = {k: round(v, 2) for k, v in state.items()} self.entangled_state[node] = collapsed return collapsed if __name__ == "__main__": web = QuantumSpiderweb() root = "QNode_0" path = web.propagate_thought(root) print("Initial Propagation from:", root) for n, s in path: print(f"{n}:", s) print("\nCollapse Sample Node:") print(web.collapse_node(root))