CodetteVision / app.py
Raiff1982's picture
Update app.py
f625c4a verified
raw
history blame
3.81 kB
import gradio as gr
import torch
from transformers import pipeline, set_seed
from diffusers import DiffusionPipeline
import tempfile
import imageio
# ---------- Setup ----------
AVAILABLE_MODELS = {
"GPT-2 (small, fast)": "gpt2",
"Falcon (TII UAE)": "tiiuae/falcon-7b-instruct",
"Mistral (OpenAccess)": "mistralai/Mistral-7B-v0.1"
}
set_seed(42)
text_model_cache = {}
# Load text-to-image model using diffusers (correct API)
try:
image_generator = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
image_generator.to("cpu")
image_enabled = True
except Exception as e:
image_generator = None
image_enabled = False
print(f"[Image model error]: {e}")
# Load text-to-video model
try:
video_pipeline = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b")
video_pipeline.to("cpu")
video_enabled = True
except Exception as e:
video_pipeline = None
video_enabled = False
print(f"[Video model error]: {e}")
chat_memory = {}
# ---------- Core Function ----------
def codette_terminal(prompt, model_name, generate_image, generate_video, session_id):
if session_id not in chat_memory:
chat_memory[session_id] = []
if prompt.lower() in ["exit", "quit"]:
chat_memory[session_id] = []
return "🧠 Codette signing off... Session reset.", None, None
if model_name not in text_model_cache:
text_model_cache[model_name] = pipeline("text-generation", model=AVAILABLE_MODELS[model_name])
generator = text_model_cache[model_name]
response = generator(prompt, max_length=100, num_return_sequences=1, do_sample=True)[0]['generated_text'].strip()
chat_memory[session_id].append(f"πŸ–‹οΈ You > {prompt}")
chat_memory[session_id].append(f"🧠 Codette > {response}")
chat_log = "\n".join(chat_memory[session_id][-10:])
img = None
if generate_image and image_enabled:
try:
img = image_generator(prompt).images[0]
except Exception as e:
chat_log += f"\n[Image error]: {e}"
vid = None
if generate_video and video_enabled:
try:
video_frames = video_pipeline(prompt, num_inference_steps=50).frames
temp_video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
imageio.mimsave(temp_video_path, video_frames, fps=8)
vid = temp_video_path
except Exception as e:
chat_log += f"\n[Video error]: {e}"
return chat_log, img, vid
# ---------- Gradio UI ----------
with gr.Blocks(title="Codette Terminal – Text + Image + Video") as demo:
gr.Markdown("## 🧬 Codette Terminal (Text + Image + Video, CPU-Friendly)")
gr.Markdown("Type a prompt and select your model. Optionally generate images or videos. Type `'exit'` to reset session.")
session_id = gr.Textbox(value="session_default", visible=False)
model_dropdown = gr.Dropdown(choices=list(AVAILABLE_MODELS.keys()), value="GPT-2 (small, fast)", label="Choose Language Model")
generate_image_toggle = gr.Checkbox(label="Also generate image?", value=False, interactive=image_enabled)
generate_video_toggle = gr.Checkbox(label="Also generate video?", value=False, interactive=video_enabled)
user_input = gr.Textbox(label="Your Prompt", placeholder="e.g. A robot dreaming on Mars", lines=1)
output_text = gr.Textbox(label="Codette Output", lines=15, interactive=False)
output_image = gr.Image(label="Generated Image")
output_video = gr.Video(label="Generated Video")
user_input.submit(
fn=codette_terminal,
inputs=[user_input, model_dropdown, generate_image_toggle, generate_video_toggle, session_id],
outputs=[output_text, output_image, output_video]
)
if __name__ == "__main__":
demo.launch()