Spaces:
Paused
Paused
import gradio as gr | |
import tempfile | |
import imageio | |
import torch | |
from transformers import pipeline | |
from diffusers import DiffusionPipeline | |
# ---------- Configuration ---------- | |
AVAILABLE_MODELS = { | |
"GPT-2 (small, fast)": "gpt2", | |
"Falcon (TII UAE)": "tiiuae/falcon-7b-instruct", | |
"Mistral (OpenAccess)": "mistralai/Mistral-7B-v0.1" | |
} | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
text_model_cache = {} | |
chat_memory = {} | |
# ---------- Load Image Generator ---------- | |
try: | |
image_generator = DiffusionPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
safety_checker=None, | |
torch_dtype=torch.float16 if device == "cuda" else torch.float32 | |
) | |
image_generator.to(device) | |
image_enabled = True | |
except Exception as e: | |
print(f"[Image Model Load Error]: {e}") | |
image_generator = None | |
image_enabled = False | |
# ---------- Load Video Generator ---------- | |
try: | |
video_pipeline = DiffusionPipeline.from_pretrained( | |
"damo-vilab/text-to-video-ms-1.7b", | |
safety_checker=None, | |
torch_dtype=torch.float16 if device == "cuda" else torch.float32 | |
) | |
video_pipeline.to(device) | |
video_enabled = True | |
except Exception as e: | |
print(f"[Video Model Load Error]: {e}") | |
video_pipeline = None | |
video_enabled = False | |
# ---------- Streamed Response Generator ---------- | |
def codette_terminal(prompt, model_name, generate_image, generate_video, session_id, batch_size, video_steps, fps): | |
if session_id not in chat_memory: | |
chat_memory[session_id] = [] | |
if prompt.lower() in ["exit", "quit"]: | |
chat_memory[session_id] = [] | |
yield "๐ง Codette signing off... Session reset.", None, None | |
return | |
# Load text model if not already loaded | |
if model_name not in text_model_cache: | |
try: | |
text_model_cache[model_name] = pipeline( | |
"text-generation", | |
model=AVAILABLE_MODELS[model_name], | |
device=0 if device == "cuda" else -1 | |
) | |
except Exception as e: | |
yield f"[Text model error]: {e}", None, None | |
return | |
generator = text_model_cache[model_name] | |
# Generate response | |
try: | |
output = generator(prompt, max_length=100, do_sample=True, num_return_sequences=1)[0]['generated_text'].strip() | |
except Exception as e: | |
yield f"[Text generation error]: {e}", None, None | |
return | |
# Stream the output character by character | |
response_so_far = "" | |
for char in output: | |
response_so_far += char | |
temp_log = chat_memory[session_id][:] | |
temp_log.append(f"๐๏ธ You > {prompt}") | |
temp_log.append(f"๐ง Codette > {response_so_far}") | |
yield "\n".join(temp_log[-10:]), None, None | |
import time | |
time.sleep(0.01) | |
# Finalize chat memory | |
chat_memory[session_id].append(f"๐๏ธ You > {prompt}") | |
chat_memory[session_id].append(f"๐ง Codette > {output}") | |
# Image Generation | |
imgs = None | |
if generate_image and image_enabled: | |
try: | |
result = image_generator(prompt, num_images_per_prompt=batch_size) | |
imgs = result.images | |
except Exception as e: | |
response_so_far += f"\n[Image error]: {e}" | |
# Video Generation | |
vid = None | |
if generate_video and video_enabled: | |
try: | |
result = video_pipeline(prompt, num_inference_steps=video_steps) | |
frames = result.frames | |
temp_video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name | |
imageio.mimsave(temp_video_path, frames, fps=fps) | |
vid = temp_video_path | |
except Exception as e: | |
response_so_far += f"\n[Video error]: {e}" | |
yield "\n".join(chat_memory[session_id][-10:]), imgs, vid | |
# ---------- Gradio UI ---------- | |
with gr.Blocks(title="๐งฌ Codette Terminal โ Streamed AI Chat") as demo: | |
gr.Markdown("## ๐งฌ Codette Terminal (Chat + Image + Video + Batch + NSFW OK)") | |
gr.Markdown("Type a prompt, select your model, and configure generation options. Type `'exit'` to reset.") | |
session_id = gr.Textbox(value="session_default", visible=False) | |
model_dropdown = gr.Dropdown(choices=list(AVAILABLE_MODELS.keys()), value="GPT-2 (small, fast)", label="Language Model") | |
generate_image_toggle = gr.Checkbox(label="Generate Image(s)?", value=False, interactive=image_enabled) | |
generate_video_toggle = gr.Checkbox(label="Generate Video?", value=False, interactive=video_enabled) | |
batch_size_slider = gr.Slider(label="Number of Images", minimum=1, maximum=4, step=1, value=1) | |
video_steps_slider = gr.Slider(label="Video Inference Steps", minimum=10, maximum=100, step=10, value=50) | |
fps_slider = gr.Slider(label="Video FPS", minimum=4, maximum=24, step=2, value=8) | |
user_input = gr.Textbox(label="Your Prompt", placeholder="e.g. A robot dreaming on Mars", lines=1) | |
output_text = gr.Textbox(label="Codette Output", lines=15, interactive=False) | |
output_image = gr.Gallery(label="Generated Image(s)").style(grid=2) | |
output_video = gr.Video(label="Generated Video") | |
user_input.submit( | |
codette_terminal, | |
inputs=[user_input, model_dropdown, generate_image_toggle, generate_video_toggle, session_id, batch_size_slider, video_steps_slider, fps_slider], | |
outputs=[output_text, output_image, output_video], | |
concurrency_limit=1, | |
queue=True, | |
show_progress=True | |
) | |
# ---------- Launch ---------- | |
if __name__ == "__main__": | |
demo.launch() | |