CodetteVision / app.py
Raiff1982's picture
Update app.py
8321f99 verified
raw
history blame
5.55 kB
import gradio as gr
import tempfile
import imageio
import torch
from transformers import pipeline
from diffusers import DiffusionPipeline
# ---------- Configuration ----------
AVAILABLE_MODELS = {
"GPT-2 (small, fast)": "gpt2",
"Falcon (TII UAE)": "tiiuae/falcon-7b-instruct",
"Mistral (OpenAccess)": "mistralai/Mistral-7B-v0.1"
}
device = "cuda" if torch.cuda.is_available() else "cpu"
text_model_cache = {}
chat_memory = {}
# ---------- Load Image Generator ----------
try:
image_generator = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
safety_checker=None,
torch_dtype=torch.float16 if device == "cuda" else torch.float32
)
image_generator.to(device)
image_enabled = True
except Exception as e:
print(f"[Image Model Load Error]: {e}")
image_generator = None
image_enabled = False
# ---------- Load Video Generator ----------
try:
video_pipeline = DiffusionPipeline.from_pretrained(
"damo-vilab/text-to-video-ms-1.7b",
safety_checker=None,
torch_dtype=torch.float16 if device == "cuda" else torch.float32
)
video_pipeline.to(device)
video_enabled = True
except Exception as e:
print(f"[Video Model Load Error]: {e}")
video_pipeline = None
video_enabled = False
# ---------- Streamed Response Generator ----------
def codette_terminal(prompt, model_name, generate_image, generate_video, session_id, batch_size, video_steps, fps):
if session_id not in chat_memory:
chat_memory[session_id] = []
if prompt.lower() in ["exit", "quit"]:
chat_memory[session_id] = []
yield "๐Ÿง  Codette signing off... Session reset.", None, None
return
# Load text model if not already loaded
if model_name not in text_model_cache:
try:
text_model_cache[model_name] = pipeline(
"text-generation",
model=AVAILABLE_MODELS[model_name],
device=0 if device == "cuda" else -1
)
except Exception as e:
yield f"[Text model error]: {e}", None, None
return
generator = text_model_cache[model_name]
# Generate response
try:
output = generator(prompt, max_length=100, do_sample=True, num_return_sequences=1)[0]['generated_text'].strip()
except Exception as e:
yield f"[Text generation error]: {e}", None, None
return
# Stream the output character by character
response_so_far = ""
for char in output:
response_so_far += char
temp_log = chat_memory[session_id][:]
temp_log.append(f"๐Ÿ–‹๏ธ You > {prompt}")
temp_log.append(f"๐Ÿง  Codette > {response_so_far}")
yield "\n".join(temp_log[-10:]), None, None
import time
time.sleep(0.01)
# Finalize chat memory
chat_memory[session_id].append(f"๐Ÿ–‹๏ธ You > {prompt}")
chat_memory[session_id].append(f"๐Ÿง  Codette > {output}")
# Image Generation
imgs = None
if generate_image and image_enabled:
try:
result = image_generator(prompt, num_images_per_prompt=batch_size)
imgs = result.images
except Exception as e:
response_so_far += f"\n[Image error]: {e}"
# Video Generation
vid = None
if generate_video and video_enabled:
try:
result = video_pipeline(prompt, num_inference_steps=video_steps)
frames = result.frames
temp_video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
imageio.mimsave(temp_video_path, frames, fps=fps)
vid = temp_video_path
except Exception as e:
response_so_far += f"\n[Video error]: {e}"
yield "\n".join(chat_memory[session_id][-10:]), imgs, vid
# ---------- Gradio UI ----------
with gr.Blocks(title="๐Ÿงฌ Codette Terminal โ€“ Streamed AI Chat") as demo:
gr.Markdown("## ๐Ÿงฌ Codette Terminal (Chat + Image + Video + Batch + NSFW OK)")
gr.Markdown("Type a prompt, select your model, and configure generation options. Type `'exit'` to reset.")
session_id = gr.Textbox(value="session_default", visible=False)
model_dropdown = gr.Dropdown(choices=list(AVAILABLE_MODELS.keys()), value="GPT-2 (small, fast)", label="Language Model")
generate_image_toggle = gr.Checkbox(label="Generate Image(s)?", value=False, interactive=image_enabled)
generate_video_toggle = gr.Checkbox(label="Generate Video?", value=False, interactive=video_enabled)
batch_size_slider = gr.Slider(label="Number of Images", minimum=1, maximum=4, step=1, value=1)
video_steps_slider = gr.Slider(label="Video Inference Steps", minimum=10, maximum=100, step=10, value=50)
fps_slider = gr.Slider(label="Video FPS", minimum=4, maximum=24, step=2, value=8)
user_input = gr.Textbox(label="Your Prompt", placeholder="e.g. A robot dreaming on Mars", lines=1)
output_text = gr.Textbox(label="Codette Output", lines=15, interactive=False)
output_image = gr.Gallery(label="Generated Image(s)").style(grid=2)
output_video = gr.Video(label="Generated Video")
user_input.submit(
codette_terminal,
inputs=[user_input, model_dropdown, generate_image_toggle, generate_video_toggle, session_id, batch_size_slider, video_steps_slider, fps_slider],
outputs=[output_text, output_image, output_video],
concurrency_limit=1,
queue=True,
show_progress=True
)
# ---------- Launch ----------
if __name__ == "__main__":
demo.launch()